
SHELF COMPONENTS FIRST
RELEASE
Conveying Affectiveness in Leading-edge
Living Adaptive Systems

CALLAS

Project IST-34800

Deliverable D121 WP1.2

Deliverable
Version 1.0 – 31 October 2007

Document. ref.: callas.D121.UOA.WP1.2.V1.0

CALLAS Shelf Components First Release D121 Version 1.0

Programme Name: IST
Project Number: 34800
Project Title: CALLAS
Partners:.. Coordinator: ENG (IT)

Contractors:
VTT Electronics, BBC, Metaware, Studio
Azzurro, XIM, Digital Video, Humanware,
Nexture, University of Augsburg, ICCS/NTUA,
University of Mons, University of Teesside,
Helsinki University of Technology, Paris 8,
Scuola Normale Superiore di Pisa, University of
Reading, Fondazione Teatro Massimo,
HITLaboratory New Zealand

Document Number: callas.D121.UOA.WP1.2.V1.0
Work-Package:.............................. WP1.2
Deliverable Type: Document
Contractual Date of Delivery: 31 October 2007
Actual Date of Delivery: 31 October 2007
Title of Document: Shelf Components First Release
Author(s): FPMS, HMW, ICCS, UOA and VTT

Approval of this report

Summary of this report:...............

History: ..

Keyword List:

Availability..................................... This report is: public

CALLAS Shelf Components First Release D121 Version 1.0

Table of Contents
EXECUTIVE SUMMARY 1

1. SPEECH-BASED RECOGNITION OF EMOTIONS 2

1.1 KEYWORD SPOTTING 2
1.1.1 Overview 2
1.1.2 Description 2
1.1.3 Documentation 4
1.1.4 Requirements 5
1.1.5 Status 5
1.1.6 Availability 5

1.2 EMOTION RECOGNITION FROM ACOUSTIC FEATURES 5
1.2.1 Overview 5
1.2.2 Description 5
1.2.3 Documentation 6
1.2.4 Requirements 11
1.2.5 Status 11
1.2.6 Availability 11

1.3 EMOTION RECOGNITION FROM LINGUISTIC FEATURES 11
1.3.1 Overview 11
1.3.2 Description 12
1.3.3 Documentation 12
1.3.4 Requirements 15
1.3.5 Status 15
1.3.6 Availability 15

2. AUDIO-VIDEO FEATURE EXTRACTION 16

2.1 AUDIO FEATURE EXTRACTION 16
2.1.1 Overview 16
2.1.2 Description 17
2.1.3 Documentation 17
2.1.4 Requirements 18
2.1.5 Status 18
2.1.6 Availability 18

2.2 VIDEO FEATURE EXTRACTION 19
2.2.1 Overview 19
2.2.2 Description 19
2.2.3 Documentation 20
2.2.4 Requirements 22
2.2.5 Status 22
2.2.6 Availability 22

3. GESTURE AND BODY MOTION 23

3.1 HUMANGLOVE 23
3.1.1 Overview 23
3.1.2 Description 24
3.1.3 Documentation 24
3.1.4 Requirements 29
3.1.5 Status 29
3.1.6 Availability 29

3.2 GESTURE RECOGNITION FROM MOBILE PHONES 29
3.2.1 Overview 29
3.2.2 Description 31
3.2.3 Documentation 31

CALLAS Shelf Components First Release D121 Version 1.0

3.2.4 Requirements 35
3.2.5 Status 35
3.2.6 Availability 35

3.3 GESTURE EXPRESSIVITY FEATURES EXTRACTION FROM VIDEO 35
3.3.1 Overview 35
3.3.2 Description 36
3.3.3 Documentation 37
3.3.4 Requirements 38
3.3.5 Status 38
3.3.6 Availability 38

4. FACIAL EXPRESSION RECOGNITION 39

4.1 FACIAL FEATURE DETECTION 39
4.1.1 Overview 39
4.1.2 Description 39
4.1.3 Documentation 40
4.1.4 Requirements 40
4.1.5 Status 41
4.1.6 Availability 41

4.2 GAZE DETECTION AND POSE ESTIMATION 41
4.2.1 Overview 41
4.2.2 Description 41
4.2.3 Documentation 42
4.2.4 Requirements 44
4.2.5 Status 44
4.2.6 Availability 44

CALLAS Shelf Components First Release Page 1 D121 Version 1.0

Executive Summary

WP 1.2 is responsible for developing the shelf components within CALLAS that provide the
technology for analyzing affective input. This deliverable gives a first overview about the first
part of the components within the shelf.

In the first year, tasks 1.2.1 – 1.2 4 have been tackled. Each tasks resulted in two or three
shelf components that are described in this deliverable. After the first year, CALLAS provides
a rich repertoire of components that provide information that may be utilized to assess the
user’s emotional state. While previous work focused on offline recognition, CALLAS deals
with the challenging task of online recognition. All shelf components developed within WP1.2
are able to provide information relevant to emotion recognition (features or emotion
assessments in terms of categories or dimensions) in real-time while the user is interacting
with an application. Most of the shelf components have been integrated in one or several
showcases.

In section 1 we describe the work conducted in task 1.2.1 (Speech-Based Recognition of
Emotions). It describes the components available for speech-based emotion recognition. The
components consist of a keyword spotter, emotion recognition form acoustic signals and an
emotion recognizer from text.

Section 2 describes the components developed within task 1.2.2 (Audio-Video Feature
Extraction). This is separated into audio feature extraction and video feature extraction.

Section 3 describes the work part of task 1.2.3 (Gesture and Body Motion Tracking). There
are three components available within this task: HumanGlove, gesture recognition from
mobile phones and gesture expressivity recognition from video signal.

Section 4 is describing the components of task 1.2.4 (Facial Expression Recognition). It
consists of two components. One for detecting facial features and the other for detecting
gaze and estimating pose.

Each component gives a short description about its functionality, describes the usage, the
requirements, status and availability.

CALLAS Shelf Components First Release Page 2 D121 Version 1.0

1. Speech-based recognition of emotions

1.1 Keyword Spotting

1.1.1 Overview

Understanding what a user says can serve as input to drive a lot of applications. The
component presented here aims at recognizing any spoken utterance inside a short
vocabulary list. We describe hereunder the different processing parts of the component,
explaining why the task is hard and conditions of utilization are restricted (small vocabulary
list, rather quite environment), before giving a brief documentation about the speech
recognition system, giving its requirements, status and availability.

1.1.2 Description

The task of Automatic Speech Recognition (ASR) is split into several modules. The classical
architecture of an ASR system is given in Figure 1. The acoustical wave is measured and
analyzed in order to extract the linguistic information and derive a sequence of words. The
different blocks of this pipe-line architecture are presented hereunder.

Figure 1: Classical architecture of an automatic speech recognition system

Audio Interface - An analog-to-digital conversion is applied here and the microphone signal
is discretized both in time (sampling) and amplitude (quantification). A digital signal is finally
obtained as a sequence of samples that give the amplitude of the microphone signal at
discrete time instants and every sample amplitude is represented in its digital form, i.e. a form
workable by the computer. The sampling frequency is typically related to the application
under consideration and the operating platform (for example, 8000 Hertz for applications over
telephone lines and 16000 Hertz for multimedia applications).

Speech Detection - This block aims at detecting the segments of speech activity in the
digital signal. Only these segments that compose the speech signal are transmitted to the

CALLAS Shelf Components First Release Page 3 D121 Version 1.0

following block. The purpose of the speech detection block is to limit the computational cost
and avoid triggering excessively the ASR process when unexpected acoustic events happen.
The function of this block is sometimes implemented manually: the speaker is asked to push
a button while speaking in order to activate the ASR system (mode push-to-talk).

Acoustical Analysis - Speech is by nature highly variable. Even if the same words are
pronounced by the same speaker, unlikely to measure two totally identical speech signals.
Because of this variability, the ASR problem is extremely hard to solve. The goal of the
acoustical analysis block is to process the speech signal in order to reduce the variability
while preserving its linguistic information. A time-frequency analysis is typically performed.
The speech signal is observed through a finite-length analysis window that is regularly shifted
along the speech samples. Classically, the analysis window length and shift are set equal to
30 milliseconds and 10 milliseconds, respectively. For every location of the analysis window,
the envelope of the spectrum (i.e. the distribution of energy across frequencies) of the
observed speech samples is estimated. This estimation is concisely expressed as a vector of
about 10 coefficients. Repeating the frequency analysis for every time location of the analysis
window, we obtain a sequence of acoustic vectors that describe the time evolution of the
spectral envelope of the speech signal. There exist many algorithms for computing acoustic
vectors. They all aim at getting acoustic vectors that represent the linguistic information
encoded in the speech signal and are as little sensitive as possible to non-linguistic variability
sources such as the speaker identity, the acoustical environment (e.g., background noise) or
the transmission channel (e.g., a telephone line or a low-quality microphone).

Acoustical Decoding – In order to recognize a word, the ASR system has to learn how the
acoustic realizations of this word look like in terms of acoustic vector sequences. During a
training phase, the ASR system is presented with several examples of every possible word,
as defined by the lexicon. A statistical model is then computed for every word such that it
models the distribution of the acoustic vectors. Repeating the estimation for all the words, we
finally obtain a set of statistical models, the so-called acoustic model, which is stored in the
ASR system for further use. However, word-based acoustic modeling becomes problematic
as the number of words increases (>50 words). More especially, it becomes difficult or even
unrealistic to gather the speech data that are required to properly train the acoustic model. It
is generally preferred to use linguistic units that are shorter than words but in a limited
number to completely describe the language. A classical choice is the phoneme. Most
languages are entirely characterized by a few tens of phonemes. They define the elementary
speech sounds that compose every word, every sentence. During the training phase, each
phoneme is used separately to estimate its own statistical model and the word-based models
can be obtained by concatenating the phoneme-based models. Such an approach requires
knowing the phonetic transcription of every word, i.e. how to pronounce it in terms of
phonemes. This information is contained in the lexicon that provides one or more phonetic
transcriptions for every word. Nowadays, most common acoustic modeling technique is
based on Hidden Markov Models (HMM).

The component we released does the whole pipeline illustrated in Figure 1. Let us specify
now how the different blocks are implemented in this component:

- The audio interface was realized using Portaudio, which is an open-sours and cross-
platform standard library for audio acquisition. Portaudio enables to perform the
acquisition with standard functions quasi-independently from the installed hardware,
and thus hopefully to be able to run the ASR on every computer. It provides easy
functions to start and stop audio streams for recording, which is used in our case, or
playing sounds. During the audio acquisition, a buffer is filled with the recorded
samples. Each time the buffer is full, it is given to a “callback” function defined by the
programmer, while the acquisition goes on (until the stream is stopped). This enables
to perform real-time audio analysis: sound can be processed without having to wait
for the stream to be stopped to start processing the input samples.

In our case, the filled buffers are directly sent to the ASR system, called EAR. EAR is
a component developed conjointly by MULTITEL ASBL and the Faculty of

CALLAS Shelf Components First Release Page 4 D121 Version 1.0

Engineering, Mons, to use in runtime another software they developed to perform
ASR, called STRUT (Speech Training and Recognition Unified Tool). ACAPELA
GROUP1 is marketing software products for automatic speech recognition that are
based on STRUT and EAR. The speech detection is either performed through
“pushing a button” (audio acquisition is started when a socket is received and
stopped when a second socket arrives) or through an algorithm to separate speech
from other sounds. The ASR task is more error-prone in the “automatic speech
detection” mode than in the “push-to-talk” mode.

- The Acoustic Analysis block supports the most classical frequency analysis methods
(MFCC, PLP, LPCC).

- The Acoustic Model is based on Hidden Markov Models to render the time evolution
of the signals. The acoustic probability of each phoneme given an acoustic vector
can be estimated by the use of Gaussian Mixtures or Multi-Layer Perceptron (MLP).
In the implementation we released, HMMs are combined with MLP outputs. Of
course, we also released a MLP thoroughly trained for English.

The lexicon and grammar are transcribed in a JSGF (Java Speech Grammar Format)
file gathering the list of allowable utterances and the phonetic transcriptions of each
word. We used the assets of our components: we do not try to make a large-
vocabulary speech recognition but we restrict, through the grammar, the
recognizable utterances to a short list (around 50) of expressions. Indeed, for the
targeted applications, it seemed us better to have a strong recognition system to
identify utterances in a small list (related to a certain context) than trying to recognize
anything in a large vocabulary, yielding in more recognition errors and the need for
high-level post-processing to interpret what has been recognized, which would also
introduce errors. In the package we released, there is thus a compiled grammar that
was built for the Interactive TV showcase.

The speech recognition performed by this component is speaker-independent and “user real-
time” (<1s).

1.1.3 Documentation

The first release of our component was developed according to the needs of the Interactive
TV showcase. It is thus raw: it does all the sequence of tasks previously described and
outputs the recognized words, but we did not yet integrate that into a graphical interface since
the application did not need one. In consequence, there is very few documentation needed to
explain how to use the component so far. We are currently developing a nicer-looking version
in JAVA, which will include a graphical interface to command the speech recognition and will
display graphics in real time to illustrate some of the computational steps applied to the initial
sound wave during the recognition process.

The released component is commanded through UDP sockets on port 22556: a first socket
must be sent on this port to start an audio stream and begin the ASR task, and a second
socket will stop the stream and terminate the ASR. The recognized utterances are also
outputted through UDP sockets, on port 22557. The output socket consists of the recognized
words, a confidence level for each of them and a timestamp indicating when the recognition
of the utterance was finished.

Depending on the context (driven by the recognized words themselves or any other input of
the global application), it might be wished to change the list of recognizable expressions
during the application. This can be done instantaneously with the released component,
provided that the new grammar file was already defined before the application (with a JSGF
file with the grammar and the phonetic transcriptions), otherwise it takes a little longer (and
we did not release tools to do that since it is not needed for the targeted applications).

1 http://www.acapela-group.com/

CALLAS Shelf Components First Release Page 5 D121 Version 1.0

EAR has a lot of settings. For example, it is possible to output not only the most likely spoken
utterance but the N most likely ones. There are also functions to get access to a lot of
computational information (probabilities of each phoneme, time information), to facilitate
vocabulary changes, etc. In this release, we compiled everything in a default mode, but if
future CALLAS applications request it we will use more of the possibilities given by Ear in the
next releases.

To run, the ASR needs to have access to all the information called by the Acoustic Decoder:
the MLP for computing acoustic probabilities for each phoneme and the compiled grammar (+
phonetic transcriptions).

1.1.4 Requirements

Rather quiet environment: noise is a big problem for ASR. The released component is
tolerant to a certain level of noise, but performance decrease when used in a noisy
environment.

1.1.5 Status

The first version of the component was already released. We performed some tests in the lab
and during the last CALLAS plenary meeting. The component is thus usable, but we are still
developing the “user-friendly” version and we will go on improving the integration of the
component with more options according to the Showcases and the Framework requests.

1.1.6 Availability

The component is available. We will build new grammars for CALLAS applications on
demand. Future versions with new features (vocabulary changes, etc.) of the device can also
be asked.

1.2 Emotion recognition from Acoustic Features

1.2.1 Overview

Automatic emotion recognition from speech has in the last decade shifted from a side issue
to a major topic in human computer interaction and speech processing. The aim is to enable
a very natural interaction with the computer by speaking instead of using traditional input
devices and not only have the machine understand the verbal content, but also more subtle
cues such as affect that any human listener would easily react to. This can be used in spoken
dialogue systems, e.g. in call center applications. However, so far real-time emotion
recognition has scarcely been attempted. We provide a first full working component for
emotion recognition.

1.2.2 Description

An automatic system for the recognition of emotions from speech has three main tasks: the
segmentation of the incoming audio signal into suitable analysis units, the extraction of
emotion relevant features from these acoustic units, and the classification into an emotional
state.

Usually linguistic units such as words or utterances serve as units of analysis for speech
emotion recognition. In an online application, however, these would have to be extracted by a
an automatic speech recognition system, which is both error-prone and time-consuming.
Therefore, a voice activity detection algorithm2 is used here, which segments the incoming
audio signal in real-time into voiced segments not longer than about 1 second. It solely

2 from ESMERALDA (http://sourceforge.net/projects/esmeralda)

CALLAS Shelf Components First Release Page 6 D121 Version 1.0

operates on the acoustic signal and makes no use of any linguistic knowledge.

From these voiced segments then acoustic features are extracted that are in general relevant
for vocal emotion. They are mainly statistics like mean, maximum, etc. over the analysis unit
derived from pitch, energy, MFCCs, the frequency spectrum, duration and pauses resulting in
a vector of 1316 features. In order to speed up classification and to make the features more
specific to the particular task, a feature selection can be performed on the basis of acoustic
test data. A more detailed description of the feature calculation can be found in 3.

For the final recognition of emotional states from the acoustic feature vectors, currently, two
classification algorithms are integrated into the speech emotion recognition system, Naïve
Bayes and support vector machines (SVM)4. Though SVM is generally slightly more
accurate, Naïve Bayes is recommended for real-time applications, because of SVM's slower
build and recognition times.

1.2.3 Documentation

Before using the emotion recognizer, the system must be trained on specific emotions and
speakers. The system is independent from emotional categories. It depends on the training
and can be e.g. [joy, boredom, anger] or [aroused, neutral, calm]. There is no restriction on
the amount of categories. But, the fewer categories used, the higher the accuracy and the
categories should be mutually exclusive.

EmoVoice Tools consists of three applications, EmoVoiceRecorder, EmoVoiceRecorderFT
(optional) and EmoVoiceClassifierTool. EmoVoiceRecorder is a tool to record audio samples
with given sentences stored in a XML file. EmoVoiceRecorderFT lets you record free speech
and tag it with an emotion. EmoVoiceClassifierTool helps you to calculate the features and
the classifier and gives you some information about the quality5 of your corpus.

EmoVoiceRecorder

EmoVoiceRecorder is a tool for recording audio samples with help of prepared sentences
which must be stored in a XML file. You can easily edit this file. You must define the
character encoding in the first line of the file. In most cases ISO-8859-1, -15 or UTF-8 should
work, depending on your operating system and text editor. You can add emotion classes
within the XML file. The emotion class tag must consist of letters only (a-z, A-Z). If you look at
ExampleSentences.xml you get an idea how simple it is. We recommend recording at
least 40 samples per class to get a good classifier.

3 T. Vogt and E. André, “Comparing feature sets for acted and spontaneous speech in view of automatic emotion recognition”, in
 Proc. IEEE Int. Conf. on Multimedia & Expo (ICME). 2005
4 LIBSVM - a Library for Support Vector Machines is used (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

5 We only can proof the quality regarding the number of samples and the recognition rate with a “10 percent 10-fold cross-validation”.
Bad result here could occur from a corpus which samples prosodic quality does not suffice.

CALLAS Shelf Components First Release Page 7 D121 Version 1.0

Figure 2: EmoVoiceRecorder (Settings)

To start EmoVoiceRecorder double click it (under Windows) or start with 'java -jar
EmoVoiceRecorder.jar'. The first dialog (see Figure 2) lets you specify following things:

. Specify a directory where the recorded samples will be saved.

. Specify the XML file with the prepared sentences.

. Give a unique ID that identifies each person.

Press OK and all settings are saved. See Figure 3 for the recording dialog. The drop down
menu (�) lets you choose the emotion class defined in the XML file. You can select a
sentence with < (�) and > (�). In � you can see the current sentence to record.

Figure 3: EmoVoiceRecorder (Application)

For recording a sample press Record (�) and speak into your microphone and press Stop
(�) after speaking. Be aware that everything between pressing Record (�) and Stop (�) is
used as one audio sample and should be one emotional expression (sentence or whole
utterance).

The files will be named and saved automatically in the defined save dir after pressing Stop.

Tips for the recording:

Please read each utterance first for yourself and then say it loud. Please don't worry about
slips of the tongue. Just go ahead. If you have the impression that an utterance does not
support you in feeling a particular emotion, please feel free to edit the file
ExampleSentences.xml.

CALLAS Shelf Components First Release Page 8 D121 Version 1.0

EmoVoiceClassifierTool

EmoVoiceClassifierTool helps you creating the classifier and checks the quality of your
corpus.

Calculate features and build classifier (see Figure 4):

Figure 4: EmoVoiceClassifierTool (Calculate features and build classifier)

. Choose where you store the EmoVoice applications.

. Choose where you store the audio sample files, you recorded with EmoVoiceRecorder.
If you have several folders with samples that should be used for the classifier copy
them into one folder and select this folder as source dir. All valid files in the folder will
be taken for building the classifier. If you want to select specific files you must delete
them from the corpus and redefine the source dir.

. Choose where you want to save all the feature files and the classifier. Please choose
an empty directory.

CALLAS Shelf Components First Release Page 9 D121 Version 1.0

After you defined the directories you should see a tree (�) with all emotion classes. Here you
can check if all files are attached to the correct class. To calculate the features and to build
the classifier press Calc features (�). This will take a while dependent on your system and
the amount of samples. You can follow the process in the Log tab. The red bar indicates that
the application is busy. You will find the classifier named classifier.cl in the target
directory.

Check quality (see Figure 5):

Figure 5: EmoVoiceClassifierTool (Check quality)

If you want to check the quality of your corpus switch to the Quality tab. If you just build the
classifier you do not have to change any directories, as the quality check takes the target dir
as input directory for proving the quality. To check the quality press Check (�). This will take
a while again. The green bar indicates a busy application and you can follow the process in
the Log tab again.

After the check is done you will see a confusion matrix (�) and a factor that indicates the
classification quality. A higher quality factor (maximum is 1.0) promises a lower

CALLAS Shelf Components First Release Page 10 D121 Version 1.0

misclassification. But, a quality factor of 1.0 does not mean a misclassification of 0%. In case
you have less than 40 samples you will see a warning (�). You can ignore it, if you're aware
that the amount of samples could be too less for a good classification result afterwards.

Some remarks, if you use the tool with Windows:

It is possible to run EmoVoice under Windows with the help of Cygwin. That means,
EmoVoice is not a native Windows application. Therefore there are some restrictions, if you
use EmoVoiceClassifierTool under Windows:

• You cannot use folders containing blanks.

• Do not start the application from a Cygwin console with 'java -jar
EmoVoiceClassifierTool.jar'. You must start it either from a Windows console
or via double-click.

EmoVoiceRecorderFT (optional)

EmoVoiceRecorderFT is a tool for recording audio samples in free text mode, in case you
plan to record emotion with free speech.

Figure 6: EmoVoiceRecorderFT (Settings)

To start EmoVoiceRecorderFT double click it (under Windows) or start with 'java -jar
EmoVoiceRecorderFT.jar'. The first dialog (see Figure 6) lets you specify following
things:

. Specify a directory where the recorded samples will be saved.

. Give a unique ID that identifies each person.

Press OK and all the settings are saved. See Figure 7 for the recording dialog in free text
mode. The emotion tag drop down menu (�) lets you choose your current emotion you plan
to record. If your emotion is not available in the list, you simply enter it in the drop down
menu.

Figure 7: EmoVoiceRecorderFT (Application)

For recording a sample press Record (�) and speak into your microphone and press Stop

CALLAS Shelf Components First Release Page 11 D121 Version 1.0

(�). Be aware that everything between pressing Record (�) and Stop (�) is used as one
audio sample and should be one emotional expression (sentence or whole utterance).

The files will be named and saved automatically in the defined save dir after pressing Stop.

The tag list option (�) shows who many samples of each emotion you already recorded.

In case you have chosen a save dir where you already recorded some samples before, you
will have automatically the existing emotion tags ready in the drop down menu.

EmoVoice Online Recognition

For recognizing emotions online you need a classifier file and the command line tool
emo_online.

You will find two versions of EmoVoice. One (EmoVoice_Linux) is pre-compiled for Linux
(32bit, gcc 4.1.2) and the other (EmoVoice_Windows) is usable (with Cygwin6) under
Windows.

emo_online opens a line to the microphone and starts continuously analyzing the input. By
default the output is send to the console. You also can send the output via socket (add option
'-e [port]').

Use emo_online classifier.cl for sending the recognition result to the standard
output (in most cases this should be the console) or use e.g. emo_online -e 3669
classifier.cl for sending the recognition result via socket (you can use any port number
you like).

For further information start emo_online with emo_online -h.

1.2.4 Requirements

• Java 6 or newer (http://java.com/en/download/index.jsp)

• If you plan to use EmoVoiceClassifierTool you also need EmoVoice
(emo_asegment_file, emo_fextract_file, emo_ctrain and emo_cclassify_file).

• Microphone

1.2.5 Status

A full working version of EmoVoice is available. Currently the component used with three
emotional classes achieves a recognition rate above 70% on user dependent classifier
training.

1.2.6 Availability

The component is available for all CALLAS partners. Please find more detailed information
on the CALLAS wiki page7.

1.3 Emotion recognition from Linguistic Features

1.3.1 Overview

The task of the component is the classification of emotions that are conveyed through simple
texts. The computer system gets an input text that has to be classified e.g. a movie review or

6 You do not need to install Cygwin. cygwin1.dll is added and that is all you need. You can run the Windows applications from a

Windows command line.
7 http://wiki.callas-newmedia.eu/twiki/bin/view/Main/AccousticRecognition

CALLAS Shelf Components First Release Page 12 D121 Version 1.0

a sentence and calculates its emotional meaning.

1.3.2 Description

An automatic system for the recognition of emotions from texts distinguishes two types of
texts: long and short. Long texts (more than 200 words) are processed by a statistical
approach, and short texts (a sentence) are managed by a semantic approach.

The statistical approach is based on the standard data mining algorithm. It extracts linguistic
features (words) from the analyzed text and evaluates them by counting their occurrences.
For the final recognition of emotional states from the linguistic feature vectors the support
vector machines (SVM) are used8.

The approach was already tested on the following English corpora: the Pang corpus9, the
Berardinelli movie review corpus10, a corpus with spontaneous dialogues (the SAL corpus)11,
a corpus with product reviews12.

A more detailed description of the feature extraction and evaluation can be found in13.

1.3.3 Documentation

Statistical Text Analyzer

Before using the analyzer, it must be trained. An example training dataset is included with the
distribution. The system is independent of emotional categories and can classify emotions
expressed e.g. in star notation [zero, one, two, three, four] stars (zero stars – poor, four stars
– excellent). There is no restriction on the amount of categories although, the fewer
categories, the higher is the accuracy of recognition.

8 Weka SVM – from the WEKA data mining toolkit (http://www.cs.waikato.ac.nz/ml/weka/)

9 Pang, B., Lee, L., Vaithyanathan, S. 2002. Thumbs up? Sentiment Classification using Machine Learning Techniques. Proc. of
EMNLP-02, the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.

10 The corpus was collected from the epinions.com and contains 11,000 reviews on digital cameras.
11 Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M., Schröder, M.. 2000. ’FEELTRACE’: An instrument for

recording perceived emotion in real time. In: Proceedings of the ISCA Workshop on Speech and Emotion, Northern Ireland. pp.
19–24.

12 The corpus containing 215 movie reviews from www.reelviews.net.
13 Alexander Osherenko and Elisabeth André. Lexical Affect Sensing: Are Affect Dictionaries Necessary to Analyze Affect?. In

Proceedings of Affective Computing and Intelligent Interaction (ACII), Springer, 2007.

CALLAS Shelf Components First Release Page 13 D121 Version 1.0

Figure 8: Statistical Text Analyzer

To classify the text regarding its emotional meaning (Figure 8):

1. Enter a text to classify e.g. a movie review in the text field Text.

2. Choose a set of emotional categories the system recognizes in the list Possible
ratings.

3. Click the Classify button.

The result of emotion recognition containing the calculated emotional rating and the
processed text are shown in Figure 9:

CALLAS Shelf Components First Release Page 14 D121 Version 1.0

Figure 9: Result of Emotional Classification by the Statistical Text Analyzer

Figure 8 and Figure 9 show at the bottom from left to right three buttons (homepage, email,
and info) that are used for as a link to the homepage, for sending an email and for displaying
an info message resp.

Semantic Text Analyzer

The system does not require training. It is independent of emotional categories and can
classify emotions e.g. [high negative, low negative, neutral, high positive, low positive] stars.
There is no restriction on the amount of categories although, the fewer categories, the higher
is the accuracy of recognition.

The system parses the sentence using two parsers (the SPIN parser14 and the Stanford
Parser15), extracts its emotional words and calculates the emotional meaning. To classify a
sentence regarding its emotional meaning (Figure 9):

1. Enter a sentence to analyze.

2. Click the Calculate button.

14 Engel, R. 2006. SPIN: A Semantic Parser for Spoken Dialog Systems.In Proceedings of the Fifth Slovenian And First International

Language Technology Conference (IS-LTC 2006), 2006.
15 Klein, D., Manning, C. D. 2003. Accurate Unlexicalized Parsing. Proceedings of the 41st Meeting of the Association for

Computational Linguistics, pp. 423-430.

CALLAS Shelf Components First Release Page 15 D121 Version 1.0

Figure 10: Semantic Text Analyzer

The result of emotion recognition containing the calculated emotion as a text and as a
descriptive photo illustrating the expressed affect is displayed (Figure 10):

Figure 11: Result of Emotional Classification by the Semantic Text Analyzer

Figure 10 and Figure 11 also show at the bottom from left to right the three buttons
(homepage, email, and info) that are used for as a link to the homepage, for sending an email
and for displaying an info message resp.

1.3.4 Requirements

• Java 6 or newer (http://java.com/en/download/index.jsp);

• Perl, for instance, ActivePerl 5.8.7 (http://www.activestate.com/Products/activeperl/);

• TreeTagger (http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/);

• Stanford Parser (http://nlp.stanford.edu/software/lex-parser.shtml);

• SPIN parser (http://www.dfki.de/~rengel/).

1.3.5 Status

The statistical text analyzer works is ready because it relies mainly on the already ready
SVM.

The semantic text analyzer is conceptually ready and has to be extended with SPIN rules
what can be done ongoing depending on concrete user requirements.

1.3.6 Availability

Online versions of both analyzers (statistical and semantic) are available here
[http://emotion.informatik.uni-augsburg.de:8080/WebInterface].

CALLAS Shelf Components First Release Page 16 D121 Version 1.0

2. Audio-Video Feature Extraction

2.1 Audio Feature Extraction

2.1.1 Overview

The main area where audio features and audio analysis is utilized is in different multimedia
devices and their novel applications are handling increasing amounts of multimedia content
such as video, audio, images, messages and music. Audio features and their analysis enable
automatic metadata extraction from video and audio recordings enable the development of
sophisticated multimedia content management applications which can help users to manage
their personal recordings. Audio based metadata extraction concentrates on general audio,
speech and music analysis. General audio analysis attempts to segment and classify the
audio signal to different events. The detected events may contain semantic meanings i.e.
speech and music but the segments may only represent audio signal with different properties.

Many of the recent research on audio content analysis and segmentation concentrate on
material from news archives, digital libraries and TV programs/movies [Lu2002], [Wu2005],
[Lin2005]. Analysing the amateur created video material with mobile phones has also
increasing interest among the researchers, [Mäkelä2006], [Vuorinen2007]. Such a data has a
new challenge since the lack of professional structure and quality of the data. In Callas
project the purpose is classify online audio to different categories, close to this are audio
analysis applications concerning context awareness by analysing environmental audio.
Korpipää & al. used multiple sensors for context awareness, but with plain audio they
reached accurary 87.6% of correct positive recognition. They used large set of audio features
and classified them with HMM's [Korpipää2003]. HMM based environmental audio analysis in
[Ma2006] reached overall accuracy of 92% for 11 acoustic environments. Also surveillance
applications have growing interest in audio analysis for detecting suspicious events as in
[Radhakrishnan2005]

Typically audio content is classified first into a basic set of main audio categories. Generally
these classes contain speech, music, silence and additionally different noise classes or
mixed classes, i.e. speech with music. Two typical approaches are hierarchical rule-based
classification and statistical classification. Short explanation An example of the rule-based
classification is in [Li2000] where they classified seven basic audio types achieving
classification accuracy over 90% for audio from movies and TV programs and movies. A kNN
classifier was used together with hierarchical classification system in [Lu2002]. They
achieved an accuracy of 96.51% for three classes for news material.

[Lu2002]L. Lu, H.-J. Zhang and H. Jiang, “Content Analysis for Audio Classification and
Segmentation,” IEEE Trans on Speech and Audio Processing, vol. 10, no 7, pp 504 – 516,
Oct. 2002.

[Wu2005]C.-H. Wu, C.-H. Hsieh, “Multiple Change-Point Audio Segmentation and
Classification Using an MDL-Based Gaussian Model”, IEEE Transactions on Speech and
Audio Processing, Accepted for future publication, vol PP, is 99, pp.1 – 11, 2005.

[Lin2005]C.-H. Lin, S. –H. Chen, T.-K. Truong, Y. Chang, “Audio Classification and
Categorization Based on Wavelets and Support Vector Machine,” IEEE Transactions on
Speech and Audio Processing,vol. 13, is. 5, Part 1, pp. :644 – 651, Sept. 2005

[Mäkelä2006] Mäkelä S.-M., Peltola J., Myllyniemi M.,”Mobile Video Capture Targeted
Narrowband Audio Content Classification”, Proceedings of the IEEE Internation Conference
on Acoustics, Speech, and Signal Processing, ICASSP 2006, May 15-19, 2006, Toulouse,
France

CALLAS Shelf Components First Release Page 17 D121 Version 1.0

[Vuorinen2007] Vuorinen O., Peltola J., Mäkelä S.-M.”Unsupervised Speaker Change
Detection for Mobile Device Recorded Speech”, IEEE Internation Conference on Acoustics,
Speech, and Signal Processing, ICASSP 2007, April 15-20, Honolulu, Hawaii, USA

[Korpipää2003] P. Korpipää, M. Koskinen, J. Peltola, S-M Mäkelä and T. Seppänen,
"Bayesian Approach to Sensor-Based Context Awareness", Pers Ubiquit Comput, 2003,
7:113 -124.

[Ma2006] Ling Ma, Ben Milner and Dan Smith,”Acoustic Environment Classification”, ACM
Transactions on Speech and Language Processing,Volume 3 , Issue 2 (July 2006), pp 1-22,
2006

[Radhakrishnan2005] Radhakrishnan, R.; Divakaran, A.; Smaragdis, A.;”Audio analysis for
surveillance applications”, Applications of Signal Processing to Audio and Acoustics, 2005.
IEEE Workshop on
16-19 Oct. 2005 Page(s):158 - 161

[Li2001] Li D, Sethi I.K, Dimitrova N and McGee T, "Classification of General Audio Data For
Content-based Retrieval", Pettern Recognition Letters 22(2001), pp 533- 544

2.1.2 Description

The audio feature extraction classifies the audio stream to 5 different sound classes. The
classes of current version are speech, music, silence, constant noise (i.e. car engine noise)
and variable noise (i.e. restaurant noise). The component output is corresponding audio class
for each audio frame. The component will take as input either live or recorded audio.

The audio feature uses for classification is MFFC (mel frequency cepstrum), and 12
coefficients are calculated for 30 ms frame with 10ms overlap. The classification is based on
HMM (Hidden Markov Models) statistical classification and the system utilises TORCH
(http://www.torch.ch/) library for classification. HMM models are trained with 3 states and 2
mixtures for each class. The models are generated left-right model for constant noise, silence
and speech and ergodic models music and variable noise. The database contained 72
minutes training data for all the classes together. The classification result of frame based
classification is filtered with in 1 second window to avoid small fluctuation of the frame based
classification results.

2.1.3 Documentation

Before using the audio feature component AA_HMM, the three the external libraries which
are listed in the requirements section must be installed. The algorithm has predefined models
for each audio class and they are installed in model\ directory.

The audio component has two different versions for recorded audio and live audio input.
Apart of different input format the architecture of the component is the same. The off line
component is delivered for testing and play around purposes. The Figure 12 has the outline
of the audio analysis component.

MFCC
calculation

HMM
classification

Result
SmoothingAudio Input Classification Result

Figure 12: Architecture of AA_HMM component

First the MFCC feature is calculated for each audio frame. MFCC’s are buffered for 1 s period
and those segments are classified, by shifting the buffer one frame at the time. The
classification results are smoothed to avoid temporal fluctuation of the results in frame basis.
The output of the component is the classification result for each second.

CALLAS Shelf Components First Release Page 18 D121 Version 1.0

For offline console application the input audio file has to be in 16kHZ, mono, .wav format. The
function is called as follows:

AA_HMM.exe [test_wav_file]

and the result will be in written in result.txt file, where each second of the classified audio has
the category label.

The live version of the audio component requires a microphone attached to the audio file and
the component started. The component supports 16 kHz and 32 kHz live audio input. The
component displays a counter on a screen for each classified audio segment. Number on a
counter is increased by 1 when the current segment is classified to corresponding class.
Explanation for the counter abbreviations in the screen shot below: M music, Sp speech, Si
silence, Cn constant noise and Vn variable noise.

Figure 13: Screen shot of the live audio analysis component output.

2.1.4 Requirements

• The component supports Windows operating system

• For live audio input a microphone attached to the computer

• The component needs following libraries:

FFmpeg (avcodec-51.dll, avformat-51.dll, avutil-49.dll)

2.1.5 Status

The current module recognizes the above 5 mentioned categories. By retraining the
component it is possible to have different audio categories. The future development will
concentrate on recognizing more human related sounds i.e. laughter, claps, that are more
suitable and beneficial for Showcase purposes. The retrained component is not available yet.

2.1.6 Availability

The current module is available in CALLAS wiki

CALLAS Shelf Components First Release Page 19 D121 Version 1.0

2.2 Video Feature Extraction

2.2.1 Overview

The video analysis is widely researched area and utilized in many application fields for
instance in surveillance, multimedia content analysis, medical imaging. In multimodal
interaction the main areas of video analysis has been concentrating in gesture recognition,
pose/gaze recognition, head tracking and later with facial expression recognition. The video
feature components goal is to obtain general information of the people participating to an
event or installation. The approach is to use face detection for counting and tracking people,
as well as orientation of the head for movement information.

There are many approaches to detect a head from a given image. (Video stream can be
handled as a sequence of images.) The methods can be roughly divided to four approaches:
knowledge based methods, feature invariant approaches, template matching methods and
appearance based methods [1]. Once the area of head have been detected it is possible to
define other attributes regarding the face including pose, expression etc.

The information of head pose has been utilized many ways in multimodal interaction. For
example in [2] the pose was used for interactive dialog systems and in [3] for finding the
direction of intention in video meeting system.

The head area can also used as an object for tracking purposes. Object tracking is a
challenging task and there are multiple ways to overcome the problem. These methods are
introduced in [4].

[1] Ming-Hsuan Yang; Kriegman, D.J.; Ahuja, N.; Detecting faces in images: a survey
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Volume 24, Issue 1, Jan. 2002 Page(s):34 – 58

[2] Morency L-P, Darrell T: Multimodal conversational agents: From conversational tooltips to
grounded discourse: head pose tracking in interactive dialog systems. Proc. of the 6th
international conference on Multimodal interfaces ICMI '04 , October 2004

[3] Jilin Tu; Huang, T.; Yingen Xiong; Rose, T.; Quek, F.;Calibrating Head Pose Estimation in
Videos for Meeting Room Event Analysis, IEEE International Conference on Image
Processing, 8-11 Oct. 2006 Page(s):3193 – 3196

[4] Yilmaz A, Javed O, Shah M., Object tracking: A survey, ACM Computing Surveys, Volume
38, Issue 4 2006

2.2.2 Description

Video feature extraction component extracts faces from video sequence or live camera feed.
The component can extract the number of faces in the video frame. The component is also a
video player and it plays video files and captures live feed from camera. The detected faces
are marked to the played video and the information of location, size, and angle of the
detected faces in the video frame are written out.

Video feature extraction component has two main functions. First, it decodes video frame
from the file or captures frame from the camera. Second, it extracts faces from the video
frame. Video decoding is based on external libraries that are included in the FFmpeg
multimedia system. Face extraction is based on Open Computer Vision Library (OpenCV).
Face extraction uses two functions object detection and object tracking. Object detection
searches and detects faces from the video frame. The detected faces are then tracked using
object tracking function. The component uses trained classifiers for detecting faces. It can
use Haar cascade classifiers which are included in the OpenCV package or classifiers which
are trained by user.

CALLAS Shelf Components First Release Page 20 D121 Version 1.0

2.2.3 Documentation

Before using the video extraction component the external libraries which are listed in the
requirements section must be installed. The classifiers for face detection can be trained or
already trained classifiers can be used. Especially if the component will be used in the
specific circumstances the classifiers can be trained. Otherwise it is recommended to use
already trained classifiers.

Face counter
component

Video input

Face detection Face tracking

Number of faces and
location information

Video frames

Detected
faces for
tracking

Results

Video feature extraction component consists of two separate applications: BCcomp-file for
video files and BCcomp-cam for live camera input.

BCcomp-file

BCcomp-file is a console application for extracting faces from video file. To start the
application use the following command line:

BCcomp-file.exe [video-file] [cascade-file]

Where, video-file is the input video file. The application supports several file formats through
the libavformat library. Cascade-file is Haarcascade XML-files that are trained classifiers for
detecting objects of a particular type, e.g. faces.

The application plays the input video file where the detected faces are bounded. In addition
the output information that includes location, size and angle of detected faces is printed to the
screen (see Figure 14). Output information:

Frame: [number] [ROI number] [Center-X] [Center-Y] [Width] [Height] [Angle]

CALLAS Shelf Components First Release Page 21 D121 Version 1.0

Figure 14: BCcomp-file (Output)

BCcomp-cam

BCcomp-cam is a console application for extracting faces from live feed from video camera.
Connect the camera to the computer using usb or firewire connection. The camera driver
must be properly installed. To start the application use the following command line:

BCcomp-cam.exe [[cascade-file]

Where, cascade-file is Haar cascade XML-file that is trained classifier for detecting objects of
a particular type, e.g. faces

The application shows the input video feed where the detected faces are bounded. In
addition the output information that includes location, size and angle of detected faces is
printed to the screen. Output information:

Frame: [number] [ROI number] [Center-X] [Center-Y] [Width] [Height] [Angle]

CALLAS Shelf Components First Release Page 22 D121 Version 1.0

2.2.4 Requirements

• The component supports Windows operating system

• For video capturing camera and suitable drivers for cameras are needed

• The component needs following libraries:

- OpenCV

- FFmpeg (avcodec-51.dll, avformat-51.dll, avutil-49.dll)

2.2.5 Status

The first version of the video feature extraction component is ready. The component is
console application and currently there are separate applications for capturing video from the
camera and for reading video from file. The application plays the video sequence where the
boundaries of the detected faces are marked. The output information that includes location,
size and angle of detected faces is printed to the screen.

2.2.6 Availability

The applications are currently available for test purposes.

CALLAS Shelf Components First Release Page 23 D121 Version 1.0

3. Gesture and Body Motion

3.1 HumanGlove

3.1.1 Overview

Regarding motion and gesture detection, we can list three main categories:

• Inside-in technologies, in which both the transducers and eventually the source of the
field to be measured lie in the device (sensing suits or exoskeletons with Hall effect
based sensors, potentiometers, magnetoresistors, optical fibers or even sensing
tissues)

• Inside-out technologies, in which the transducers are on board the sensing device
but they sense the magnetic or gravitational field of the Earth or a generated
external (magnetic) field

• Outside-in technologies, in which the sensors are not on the links or on the joints but
located in the surrounding environment. In some cases these technologies make use
of active or reflective markers.

The aim of wearable devices developed by Humanware during the Callas Project is the
motion tracking in non-structured environment: there will be no need for controlled lights,
optical markers or well positioned multicameras (as in optical systems, e.g. Vicon systems),
no need for magnetic environments (as in Polhemus systems) o acoustic transmitter/receiver
(as in Zebris system). The user will wear a suit or partial suit according to the body portion to
be tracked. “Inside-in” motion tracking technologies will be exploited. The main purpose of
this devices is puppeteering, motion tracking to replicate human motion in avatars or
extracting emotions from gestures. Although these wearable autonomous devices are

Outside-In
(absolute measurement)

Acoustic Systems

Optical Systems

WWeeaarraabbllee
WWeeaarraabbllee wwiitthh

eexxtteerrnnaall ssoouurrcceess

Inside-In
(relative measurement)
Electro-mechanical suits or

exoskeletal systems:

Sensing-tissues

optical fibers

potentiometers

Inside-Out
(relative measurement)
Electromagnetic or inertial

systems referring to the Earth
fields

(absolute measurement)
Electromagnetic sensors

referring to externally
generated fields

fields

MMoottiioonn CCaappttuurree SSyysstteemmss

WWeeaarraabbllee mmaarrkkeerrss

CALLAS Shelf Components First Release Page 24 D121 Version 1.0

suitable for any VR related purpose.

3.1.2 Description

In these first 12 months a glove tracking the motion of the hand has been released. The
current release of the glove detects and measures all the finger flexions. Any link is endowed
with a sensor unit, as described below, devoted to measure the flexion of the following joint.
Hall Effect based sensors detect the magnetic field induced by permanent magnets rotating
while the phalanges flex.

Referring to Figure 15 a brief description of the sensing unit follows: one end of the torsion
spring 5 is fixed in the springholder 4; the other end of the spring is fixed in the magnet pulley
1. The Spring preloader 9 rotates the springholder 4, obtaining the desired pretensioning of
the spring 5. When the desired tension is obtained, the spring preloader 9 is fixed on the
sensor holder 7 by means of the screw 11. In the magnets pulley 1 there are the magnets
housings to hold the permanent magnets 2 and 3 in the right position, while the sensor holder
7 has the housing for the Hall Effect sensor 8. The pulling cable 6 has one end stuck to the
following phalange and the other end is stuck to the magnet pulley 1 around which is winded.
When the phalange flexes the cable 6 is pulled and the pulley 1 turns. While the pulley 1
turns, the magnets rotate and the magnetic field induced on the sensor 8 varies. When the
phalange extends, the cable 6 is released and the pulley 1 turns back because of the spring
5, winding the cable 6 around the pulley 1.

Figure 15: Sensing unit layout

3.1.3 Documentation

The HumanGlove is provided with:

• control unit converting the analog signals (the glove sensors output) into digital form,
in order to transmit them through a common RS-232 line to a PC or to a workstation.
The next release of the glove will be endowed with a virtual RS-232 via USB, and the
data will be transmitted wirelessly via Bluetooth.

CALLAS Shelf Components First Release Page 25 D121 Version 1.0

• a software showing a virtual hand replicating the hand posture of the user, for test
and calibration purposes

• libraries developed with the aim of simplifying the communication with the control unit
of the HumanGlove for anyone interested in developing applications that exploit the
HumanGlove.

• user’s manuals (software manual, developer’s manual, installation manual)

The communication through the RS-232 occurs at 38400 baud 8n1 (8 bit, no parity bit and
one bit of stop). The communication protocol between the control unit and the PC is the
following:

1. The control unit remains in a waiting state until it receives the character 'A' (0x41);
2. The PC sends the character 'A' (0x41);
3. Once this character is received, the control unit sends a packet with the positions

of the DOFs;
4. The PC reads the packet with the data;
5. The control unit returns to point 1;
6. The PC returns to point 2.

The data packet transmitted to the PC is made of 24 channels (DOF) and every channel is
16bit long (an unsigned short) for a total of 48 bytes. Every channel contains a value
between 0 and 4095 (12bit resolution). The last 4 channels of the packet are reserved for
future use and should therefore be ignored.

The control unit sends the 12 bits for each DOF starting from the most significant (bit n.11) to
the least significant (bit n.0). After these 12 bits, it sends 4 bits for padding purposes, so that
each DOF value is aligned to a 16bit-word. So, when a value is received, its bits are arranged
as shown in Figure 16.

Figure 16: The currentVal array, as it is received from the control unit.

The order of the channels within the packet (and within the currentVal[] array) is the following:

CALLAS Shelf Components First Release Page 26 D121 Version 1.0

Calibration of the acquired values

The output values of the control unit are integers between 0 and 4095. Once they are
acquired, these values must be transformed into angles.

Assuming a linear transform, the value recorded by HumanGlove is transformed into an angle
using the following formula:

short n. DOF

0 Thumb Abd/Add

1 Thumb Flex/Ext 1

2 Thumb Flex/Ext 2

3 Thumb Flex/Ext 3

4 Index Abd/Add (index MP add)

5 Index Flex/Ext 1 (index MP flex)

6 Index Flex/Ext 2 (index PIP flex)

7 Index Flex/Ext 3(index DIP flex)

8 Middle Abd/Add (middle MP add)

9 Middle Flex/Ext 1(middle MP flex)

10 Middle Flex/Ext 2 (middle PIP flex)

11 Middle Flex/Ext 3 (middle DIP flex)

12 Ring Abd/Add (ring MP add)

13 Ring Middle Flex/Ext 1 (middle MP flex)

14 Ring Middle Flex/Ext 2 (middle PIP flex)

15 Ring Middle Flex/Ext 3 (middle DIP flex)

16 Little Abd/Add (little MP add)

17 Little Middle Flex/Ext 1 (little MP flex)

18 Little Middle Flex/Ext 2 (little PIP flex)

19 Little Middle Flex/Ext 3 (little PIP flex)

20 Reserved

21 Reserved

22 Reserved

23 Reserved

Figure 17: Number order of the DOFs of the HumanGlove

CALLAS Shelf Components First Release Page 27 D121 Version 1.0

Meaning of the sampled values

The HumanGlove is able to record the position of 4 angles (1 abduction/adduction and 3
flexion) for each of the 5 fingers.

In the library SerialLib and CalibLib these angles have been numbered starting from the
abduction/adduction (the first DOF) and the proximal metacarpal joint (the second DOF is the
metacarpal-phalangeal flexion) to the distal joint of the finger (the fourth DOF is the distal-
inter-phalangeal flexion).

With this method,

• the DOF marked by index 1 is the index add/abduction DOF named
hmw_sglv_index1 (shown in Figure 21)

• the DOF marked by index 2 is the MP flexion DOF named hmw_sglv_index2 is
(shown in Figure 19 and Figure 20)

• the DOF marked by index 3 is the PIP flexion DOF named hmw_sglv_index3 is
(shown in Figure 19 and Figure 18)

Figure 18: The HMW_SGLV_INDEX4 DOF

Figure 19: The HMW_SGLV_INDEX3 DOF

MinAngle
MinValueMaxValue

MinAngleMaxAngleueeChannelVal
Angle +

−

−
=

)(

)(*

CALLAS Shelf Components First Release Page 28 D121 Version 1.0

• the DOF marked by index 4 is the DIP flexion DOF named hmw_sglv_index4 is
(shown in Figure 17)

Figure E shows the degree of freedom hmw_sglv_index2 when the angle is 0 and Figure 20
shows the degree of freedom hmw_sglv_index2 when the angle is about 90.

The default output is set as follows: the value 90 degrees is associated with a complete
flexion (90 degrees of the physiological joint), as in figure F, while the value 0 degrees is a full
extension (0 degrees of the physiological joint) as in figure E. The abduction/adduction DOF
is shown in Figure 21: in this case the zero corresponds to the second image.

Figure 20: The HMW_SGLV_INDEX2 DOF (the angle is
0°)

Figure 21: The HMW_SGLV_INDEX2 DOF (the angle is
90°)

CALLAS Shelf Components First Release Page 29 D121 Version 1.0

3.1.4 Requirements

Unit sensing performance:

Non Linearity: < 2.5%

Accuracy: < 0.1V/2.5 deg

Range: 110 deg

The glove is connected to the host computer through a standard RS-232 at 38400 baud. It
can be easily connected to any workstation, PC or Macintosh. In the next release (expected
within M14 of the Callas Project) USB connection and Bluetooth connection will be available.

3.1.5 Status

A prototype, which relies on 15 DoFs, is available. Within the month 14 the wireless
connection will be released and a new unit sensor for the ad/abduction will be tested. From
Month 12 to 18 the upper limb of the user will be endowed with a partial suit. The task related
to the glove can be considered 85% accomplished. The slight delay is because of the
difficulty to set up a reliable wireless transmission. Aesthetic improvements are also expected
according to the user’s requirements.

3.1.6 Availability

A single prototype has been built and it will be available to the callas partners on demand.

3.2 Gesture Recognition from Mobile Phones

3.2.1 Overview

Previous work on gesture control and recognition can be classified into two main categories,
camera-based and movement sensor-based. Camera-based recognition is most suitable for
stationary applications, and often requires specific camera setup and calibration. A review on
camera based methods can be found in [1].

The movement sensor-based approach utilises different kinds of sensors e.g. tilt,
acceleration, pressure, conductivity, capacitance, etc. to measure movement. An example of
such an implementation is GestureWrist, a wristwatch-type gesture recognition device using

Figure 22: The HMW_SGLV_INDEX1 DOF (the zero corresponds to the
second image)

CALLAS Shelf Components First Release Page 30 D121 Version 1.0

both capacitance and acceleration sensors to detect simple hand and finger gestures [2].
Tsukada and Yasumura developed a wearable interface called Ubi-finger, using acceleration,
touch and bend sensors to detect a fixed set of hand gestures, and an infrared LED for
pointing a device to be controlled [3]. XWand, a gesture-based interaction device, utilises
both sensor-based and camera-based technologies [4]. The creators of XWand present a
control device that can detect the orientation of device using a 2-axis accelerometer, a 3-axis
magnetometer and a 1-axis gyroscope, as well as position and pointing direction using two
cameras. The system is also equipped with an external microphone for speech recognition.
The user can select a known target device from the environment by pointing, and control it
with speech and a fixed set of simple gestures.

Gesture recognition were used in Ambicence project Smart Design Studio to interact with
virtual reality environment [5] and in Atelje project to navigate in multimedia presentation [6].
In both cased the developed gesture recognition platform utilised a technology is based on a
SoapBox (Sensing, Operating and Activating Peripheral Box), which is a sensor device
developed for research activities in ubiquitous computing, context awareness, multi-modal
and remote user interfaces, and low power radio protocols [7]. The basic sensor board of
SoapBox includes a three-axis acceleration sensor, an illumination sensor, a magnetic
sensor, an optical proximity sensor and an optional temperature sensor. Acceleration sensors
measure both dynamic acceleration (e.g. motion of the box) and static acceleration (e.g. tilt of
the box). They provide useful information for the recognition of human hand gestures and a
new way to add human motion to the human/machine interface. [8]

To use mobile phone with accelerometers as a sensor has advantages compared to special
sensors. The price of the phone is lower than of the tailor made gadget and it is easy to
purchase. Mobile phone is something that everybody posses and in future it can be a
multipurpose tool even for accessing gesture driven multimodal interfaces. This encourages
the development the gesture/body motion tracking by the mobile phone as a sensor.

[1] Mitra, S.; Acharya, T:Gesture Recognition: A Survey
Systems, Man and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
Volume 37, Issue 3, May 2007 Page(s):311 – 324

[2] Rekimoto J (2001) GestureWrist and GesturePad : Unobtrusive Wearable Interaction
Devices. Proceedings of the Fifth International Symposium on Wearable Computers, ISWC
2001, pp 21-31.

[3] Tsukada K, Yasumura M (2002) Ubi-Finger: Gesture Input Device for Mobile Use.
Proceedings of APCHI 2002, Vol. 1, pp 388-400.

[4] Wilson A, Shafer S (2003) Between u and i: XWand: UI for intelligent spaces. Proceedings
of the conference on Human factors in computing systems, CHI 2003, April 2003, pp 545-
552.

[5] Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., Di Marca, S.
Accelerometer-based gesture control for a design environment.Personal and Ubiquitous
Computing special issue on Multimodal Interaction with Mobile and Wearable Devices,
Springer-Verlag 2005.

[6] Iacucci G, Kela J, Pehkonen P (2004). Computational support to record and re-experience
visits. Personal and Ubiquitous Computing, Vol 8 No 2, Springer-Verlag, pp 100-109, 2004

[7] Tuulari E, Ylisaukko-oja A (2002) SoapBox: A Platform for Ubiquitous Computing
Research and Applications. First International Conference, Pervasive 2002, pp 26-28, 2002

[9] Kallio S, Kela J, Mäntyjärvi J, Plomp J: Visualization of hand gestures for pervasive
computing environments. AVI2006: 480-483

CALLAS Shelf Components First Release Page 31 D121 Version 1.0

3.2.2 Description

An automatic system for the recognition of gestures reads Nokia 5500 sensor data using
Bluetooth communication and computing simple contexts (orientation and acceleration level).
The output of the component describes the orientation, acceleration and if the “browser”
button of the phone is pressed.

3.2.3 Documentation

Installation

• Nokia 5500 mobile phone

Install sis-package to Nokia 5500 mobile phone using your preferred way (Bluetooth,
data cable etc.). Via Bluetooth:

1) Create the Bluetooth connection between PC and mobile

2) Send .sisx package from PC to phone (as text message)

3) Open the text message and install the application

• PC

Unzip Gesture library to some directory in your computer. Copy GestureLibrary.ini file
to your Windows directory (usually c:\windows). Edit GestureLibrary.ini LibPath to point
lib-directory of Gesture library. Alternative location for GestureLibrary.ini is the
directory where you start your PC-application. If you don't want to use
GestureLibrary.ini at all you must launch PC-application from the lib directory of
Gesture library.

Module description

The modules of gesture recognition system are shown in Figure 23.

CALLAS Shelf Components First Release Page 32 D121 Version 1.0

Gesture Library

libGesture.lib

Symbian application

BTSensor.exe

Java

DataReceiver.jar

JNI DLL

DataReceiver.dll

Application

GestureApplication.exe

Framework
Gesture
Library

Contexts.txt

Nokia 5500 mobile phone

PC

Figure 23: Gesture recognition system modules

When phone module (BTSensor) is launched it advertises Bluetooth service with identifier
0x10ff and starts waiting connection from PC.

When PC application containing Gesture library is launched, Gesture library kicks up Java for
searching for Bluetooth devices which provide service identifier 0x10ff.

Once connection is established between mobile phone and PC, mobile phone starts sending
sensor data to PC. Sensor data includes acceleration x, y and z. Incoming data is inserted to
the Framework input buffer.

Each time when new data is inserted to the Framework, the Gesture library reasons new
contexts values.

Computing orientation context

Orientation context is reasoned with the latest acceleration values. Acceleration values are
first normalized with acceleration minimum and maximum values.

2/)min(max

2/)min(max(min

xx

xxx
xxnorm onaccelerationaccelerati

−

−+
−=

CALLAS Shelf Components First Release Page 33 D121 Version 1.0

Corresponding normalization is done also for acceleration y and z. Then calculate angles

)arcsin(xnormx onacceleratiangle =

Corresponding angles also for y and z. Then finally confidences:

coff

angle
DisplayUp z=

coff

angle
nDisplayDow z−

=

coff

angle
tDisplayLef y

=

coff

angle
htDisplayRig y−

=

coff

angle
DeviceUp x−

=

coff

angle
DeviceDown x=

Divider coff is used to scale confidences to the range 0 to 100. The biggest confidence value
will be the reasoned context for orientation. Reasoned context is inserted to the Framework
output buffer. Also confidence values for all six contexts are inserted to output buffer. Results
are also written to text file.

Computing acceleration context

Acceleration context is reasoned from five last acceleration values. Standard deviation is
calculated for acceleration x, y and z. These deviations are summed

zyxtot deviationdeviationdeviationdeviation ++=

If total deviation is more than threshold for high acceleration, context is AccelerationHigh.
Else if total deviation is more than threshold for moderate acceleration, context is
AccelerationModerate. Else if total deviation is more than threshold for low acceleration,
context is AccelerationLow. Else acceleration context is AccelerationStill. Reasoned context
is inserted to the Framework output buffer. Also acceleration value scaled from 0 to 100 is
inserted to output buffer.

Obtaining contexts

Contexts reasoned by Gesture library can be obtained in two ways

• Read GestureLibraryContexts.txt. When Gesture library is running it generates all the
time GestureLibraryContexts.txt file containing latest reasoned contexts. Example of
GestureLibraryContexts.txt

Orientation 101: 63, 0, 12, 0, 0, 0

Acceleration 201: 0

Button 302: 100

Orientation context is 101 which means "display up", see below. In this example
display was mostly up but also a bit left. Next six values are 0 to 100 values

CALLAS Shelf Components First Release Page 34 D121 Version 1.0

indicating the confidence for each context (order is the same as in the following
table). In this case you can think that display is 63% up but also 12% left.
Acceleration context is 201 which means "still". Acceleration value is 0, maximum
would be 100. Button context is 302 which means "not pressed". Button value is
always 100.

 // Orientation contexts

const int ORIENTATION_DISPLAY_UP = 101;

const int ORIENTATION_DISPLAY_DOWN = 102;

const int ORIENTATION_DISPLAY_LEFT = 103;

const int ORIENTATION_DISPLAY_RIGHT = 104;

const int ORIENTATION_DEVICE_UP = 105;

const int ORIENTATION_DEVICE_UPSIDEDOWN = 106;

// Acceleration contexts

const int ACCELERATION_STILL = 201;

const int ACCELERATION_LOW = 202;

const int ACCELERATION_MODERATE = 203;

const int ACCELERATION_HIGH = 204;

// Button contexts

const int BUTTON_PRESSED = 301;

const int BUTTON_NOT_PRESSED = 302;

• Create C++ application and read contexts directly from Framework output buffer. The
following piece of code reads the orientation information

int* data = new int[SIZE_ORIENTATION];

if (TheFramework::Instance()->GetData (ID_ORIENTATION,
(void **) &data))

{

 int iContext = data[0]; // context, f.e. 101

 int displayUp = data[1]; // display up value
(0->100)

 int displayDown = data[2]; // display down
value (0->100)

 int displayLeft = data[3]; // display left
value (0->100)

 int displayRight = data[4]; // display right
value (0->100)

 int deviceUp = data[5]; // device up value
(0->100)

 int deviceDown = data[6]; // device down value
(0->100)

 }

 else

CALLAS Shelf Components First Release Page 35 D121 Version 1.0

 {

 // buffer empty, orientation data not available

 }

 delete data;

3.2.4 Requirements

• Nokia 5500 mobile phone

• Microsoft Windows XP SP2 or newer

• Bluetooth hardware and bluetooth stack (Following Bluetooth stacks are supported:
Microsoft, BlueSoil, WIDCOMM)

• Java run-time environment

3.2.5 Status

Currently the gesture and body motion component recognizes the mobile phone movement
from the accelerator sensors of the phone. The future development will concentrate on
gesture recognition for more specifically. The aim is to use also mobile phone with the
integrated acceleration sensors in capturing the hand movements. Also direct measurement
modality will be developed to track other type of free (i.e. no specific training needed) hand
movements in addition to tilting.

3.2.6 Availability

The component is available.

3.3 Gesture Expressivity Features Extraction from Video

3.3.1 Overview

The localisation of regions of interest in the approach of the described component is achieved
by detecting skin regions. The proposed method16 is particularly efficient in terms of
processing cost while simultaneously the recognition rate is particularly high. The
assumptions that are imposed by the particular algorithm, and what will be reported below,
are not particularly restrictive while the margin for improvement, both qualitatively and
temporal is possible with the use of various heuristic methods.

The process is the following. Each frame is converted from the initial RGB color space in the
YCrCb color space. Using the three resulting chromatic components the joint probability of
each pixel being a skin pixel is calculated. This way for each pixel of the frame is assigned a
probability denoting whether it contains chromatic information of skin or not (Figure 24).
Following that, the chromatic skin mask is produced with use of a threshold which has been
determined by the user. Applying the resulting mask in the initial frame, the regions that
contain high skin probability are produced.

16 G. Caridakis, A. Raouzaiou, K. Karpouzis, S. Kollias, "Synthesizing Gesture Expressivity
Based on Real Sequences", Workshop on multimodal corpora: from multimodal behaviour
theories to usable models, LREC 2006 Conference, Genoa, Italy, 24-26 May.

CALLAS Shelf Components First Release Page 36 D121 Version 1.0

Figure 24: Skin probability

3.3.2 Description

The above process, except for the regions of interest that we wish to distinguish in the initial
frame, usually produces also various regions that have chromatic characteristics very close to
those of skin and which we want to avoid. To achieve this we follow the following process. A
large number of these regions are much smaller than any of the region of interests, hands
and head in the case in question. With this observation and selecting relatively big threshold
in the creation of chromatic dermal mask we can avoid the import of noise in the frame with
the form of small points that have been recognized as dermal regions. Then, in order to
remove this noise which might survive in the picture even after the application of the previous
method, we apply some morphological operators. Taking into consideration the size and form
of what we expect the regions to have we apply suitable morphological operators using a
structural element constituted by a disk, whose size is a fraction of the diagonal of
parallelogram that is the convex hull of the head. Hence segments of the image which have
been recognized as skin regions but have a smaller size are removed from the final mask. An
overview of the proposed algorithm is depicted in Figure 25.

CALLAS Shelf Components First Release Page 37 D121 Version 1.0

Figure 25: Overview of the algorithm

3.3.3 Documentation

The above algorithm was implemented in a platform combining various architectures and
technologies. This platform constitutes an interface between .NET and two other
technologies, namely OpenCV and ffmpeg. A snapshot of the application appears inFigure
26. .NET was used mainly for the possibility of using object oriented programming, something
which gives us the opportunity to develop a wider and extensible platform. At the same time
the user friendly environment and the accessibility of low level code were some of the
advantages. Using methods of communication with lower level languages we enhance the
platform with the OpenCV and ffmpeg capabilities. OpenCV is used for frame processing of
the video and for the implementation of the Viola - Jones algorithm. ffmpeg was used for
export frames from video stored in form of file while simultaneously we have the possibility of
using all the models of compression which supports the particular library with particularly
efficient way. Finally the treatment of pixels for the calculation of probabilities, centers of
weight of regions as well as morphological operations and the graphic environment were
implemented in the .NET environment, because it was decided that they did not constitute
parts of the algorithm that added particular computational cost.

Viola And Jones
Head Classifier

Skin
Detector

Distribution
Characteristics
Extraction

Final Mask
Generation

Initial Frame

Thresholding
Initial Mask
Generation

Morphological
Operators

CALLAS Shelf Components First Release Page 38 D121 Version 1.0

Figure 26: Application screenshot

3.3.4 Requirements

The component requires the installation of OpenCV and ffmpeg. In terms of input the camera
should not have any special features e.g. high speed, multi resolution, etc. It has been tested
in most Windows OSs (2000, XP).

3.3.5 Status

Beta version.

3.3.6 Availability

The application is still under development, but in a demonstrable stage.

CALLAS Shelf Components First Release Page 39 D121 Version 1.0

4. Facial Expression Recognition

4.1 Facial Feature Detection

4.1.1 Overview

A system for the detection of facial characteristics is provided in this component. Facial
feature detection is a crucial step for other applications, such as expression recognition, gaze
detection, pose estimation, etc. The component constitutes a system for detecting facial
features and tracking their path in a video sequence. The features detected and tracked are
the eye corners and eyelid centers, as well as the eye centers. Mouth corners are also
detected and tracked.

4.1.2 Description

Prior to eye and mouth region detection, face detection is applied on the face images. The
face is detected using the Boosted Cascade method. The output of this method is usually the
face region with some background. Furthermore, the position of the face is often not centered
in the detected sub-image. Consequently, a technique to postprocess the results of the face
detector is used. More specifically, a technique that compares the shape of a face with that of
an ellipse is used. According to this technique, the distance map of the face area found at the
first step is extracted. Here, the distance map is calculated from the binary edge map of the
area. An ellipsis scans the distance map and a score representing the average of all distance
map values on the ellipse contour el, is evaluated. This score is calculated for various scale
and shape transformations of the ellipses. The transformation which gives the best score is
considered as the one that corresponds to the ellipse that best describes the exact face
contour. The lateral boundaries of the ellipse are the new boundaries of the face region.

A template matching technique is used for the facial feature area detection step: The face
region found by the face detection step is brought to certain dimensions and the
corresponding edge map is extracted. Subsequently, for each pixel on the edge map, a
vector pointing to the closest edge is calculated and its x,y coordinates are stored. The final
result is a vector field encoding the geometry of the face. Prototype eye patches were used
for the calculation of their corresponding vector fields and the mean vector field was used as
prototype for searching similar vector fields on areas of specified dimensions on the face
vector field. The candidate region of the face that minimizes a search criterion is marked as
the region of the left or right eye.

For the eye center detection, the normalized area of the eye is brought back to its initial
dimensions on the image and a light reflection removal step is employed. The grayscale
image of the eye area is converted to a binary image and small white connected components
are removed. The final result is an eye area having reflections removed. Subsequently,
horizontal and vertical derivative maps are extracted from the resulting image and they are
projected on the vertical and horizontal axis respectively. The mean of a set of the largest
projections is used for an estimate of the eye center. Following, a small window around the
detected point is used for the detection of the darkest patch and its center is considered as
the refined position of the eye center.

For the detection of the eye corners (left, right, upper and lower), Projection Functions are
employed. More in detail, Generalized Projection Functions (GPFs), which are a combination
of the Integral Projection Functions (IPFs) and the Variance Projection Functions (VPFs), are
used. The integral projection function’s value on row (column) x (y) is the mean of its
luminance, while the Variance Projection Function on row (column) x (y) is its mean variance.

CALLAS Shelf Components First Release Page 40 D121 Version 1.0

The GPF’s value on a row (column) x (y) is a linear combination of the corresponding values
of the derivatives of the IPF and VPF on row x (column y). Local maxima are used to declare
the positions of the eye boundaries.

For the mouth area localization, a similar approach to that of the eye area localization is
used: The vector field of the face and prototype images are used for the extraction of a
prototype vector field of the mouth area. Subsequently, similar vector fields are searched for
on the lower part of the normalized face image. However, as the mouth’s luminance has
many times similar luminance values with its surrounding skin, an extra factor is also taken
into account. That is, at every search area, the mean value of the hue component is
calculated and added to the inverse distance from the mean vector fields of the mouth.
Minimum values declare mouth existence.

For the extraction of the mouth points of interest (mouth corners), the hue component is also
used. Based on the hue values of the mouth, the detected mouth area is binarized and small
connected components, whose value is close to 0o are discarded following the light reflection
removal technique employed for the eyes. The remainder is the largest connected
component which is considered as the mouth area. The leftmost and rightmost points of this
area are considered as the mouth corners. An example of detected feature points is shown in
Figure 27.

Figure 27: Detected facial feature points

Once the positions of the facial feature points of interest are allocated on a frontal face,
tracking is the next step. In this way, gaze detection and pose estimation can be determined,
not only on a single frame, but on a series of frames. In our component, tracking was done
using an iterative, 3-pyramid Lucas-Kanade tracker.

4.1.3 Documentation

The component has been written using C programming in Visual Studio 6, using a lot of basic
functions of the Intel OpenCV library. Avi files and real time capturing from a webcam are
currently supported. The output of the component is a sequence of coordinates (included in a
text file) for each one of the detected characteristics, as well as visual feedback of the result.
The component input (video file/ live cam input) and outputs (facial features coordinates) will
be adapted to be compliant with the framework requirements.

For correct extraction of facial characteristics, the user has to face the webcam frontally and
allow, to an extent, for satisfactory lighting.

4.1.4 Requirements

The component has been developed on a Windows XP platform. Testing on different
versions of Windows requires Windows XP dll files which will be included in the first release
of the component. Also, OpenCV dll files and various files, as results of training procedures
need to be available.

CALLAS Shelf Components First Release Page 41 D121 Version 1.0

4.1.5 Status

For the time being, the component gives satisfactory results at detecting eye points but
further research will have to be conducted for mouth points’ localization and tracking. Also,
improvements in the tracking phase have to be made as rapid movements of the user
(especially in low resolution webcams) may distort the results. Accuracy is crucial in the
Facial Feature Detection step, as it serves as basis for other components (gaze/pose,
expression recognition) within the frames of the CALLAS project. Furthermore, research
towards detecting/tracking more features (eyebrows) is planned as future work.

4.1.6 Availability

A first non-demonstrable release of the module, developed on Windows, needs further
research, in order to be combined with other modules and end up with final algorithm
requirements. A demo can be soon available on demand for testing purposes.

4.2 Gaze detection and pose estimation

4.2.1 Overview

This component deals with the detection of the directionality of the eye gaze. Using a USB
camera or an AVI file of a person facing towards the camera, a gaze estimation can be
achieved. The component highly depends on the facial feature detection component (see
section 4.1) which detects and tracks eye areas and points. Based on the detection of the
eye areas, gaze estimation is achieved. Also, based on the detection of facial characteristics,
head pose can be estimated.

4.2.2 Description

GAZE DETECTION

In recent bibliography, most gaze detection and pose determination techniques need special
hardware setup. In other cases, intrusive devices have to be worn by the user, making the
system less appropriate for wide-range applications. In the current work, features are
detected and tracked, allowing for a relative freedom of the user, under good lighting
conditions. Under these circumstances, the gaze directionality can be approximately
determined and this is enough for attention recognition purposes, as well as for general
decisions regarding one’s gaze. For gaze detection, the area defined by the four points
around the eye is used. Prototype eye areas depicting right, left, upper and lower gaze
directionalities are used to calculate mean grayscale images corresponding to each gaze
direction. The areas defined by the four detected points around the eyes, are then correlated
to these images. The normalized differences between the correlation values of the detected
eye area with the left and right as well as upper and lower mean gaze images are calculated.

The normalized value of the horizontal and vertical gaze directionalities (conventionally,
angles) consists a weighted mean between the corresponding differences found before,
weighted by a factor taking into account a fraction of the total amount of intensity of both eye
areas. This fraction is used to weight the gaze directionality values so that eye areas of
greater luminance are favored in case of shadowed face.

POSE ESTIMATION

To estimate the pose of a face based on the features detected, orthographic projection can
be assumed for a linear system to be constructed, since depth information is not necessary
for pose estimation. The pose of the face is a problem of estimating the direction of the face-
plane which depends on the changes of the distances between facial characteristics. Thus, if
the eye and mouth centers are considered, it is possible to initialize a triangle A,B,C, with A,B

CALLAS Shelf Components First Release Page 42 D121 Version 1.0

being the left and right eye centers and C the mouth center at the frontal view. Let A’,B’ and
C’ be the displaced positions of these points, which are considered to be known since the
points are tracked. The α,β,γ rotation angles around the y,z,x-axis are:

'

'

'

arcsin

arccos
cos

arccos
cos

x

y

x

x

y

y

C

C

A

A

C

C

γ

β
γ

α
γ

=

=

=

Figure 28: Shows a typical estimation of pose detection.

Figure 29: Pose Estimation Result

A chart flow of the steps followed for gaze/pose estimation is summarized in Figure 30:

Figure 30: Gaze/pose estimation

Near future research will try to combine pose detection with gaze estimation, in order to
extract conclusions regarding a user’s visual attention.

4.2.3 Documentation

The component has been written using C programming in Visual Studio 6, using a lot of basic
functions of the Intel OpenCV library. Avi files and real time capturing from a webcam are
currently supported. The output of the component is a sequence of angles (exported to a text

AVI file/ USB input
of user sitting in
front of a camera

Face Detection Ellipse Fitting

Facial Features Detection

Pose EstimationGaze Detection

CALLAS Shelf Components First Release Page 43 D121 Version 1.0

file) for each one of the detected gaze/pose directions, as well as visual feedback of the
result. The component input (video file/ live cam input) and outputs (gaze/pose directions) will
be adapted in order to be compliant with the framework requirements.

Regarding the gaze detection part, a first version of the module is available on the Wiki of
CALLAS. As gaze is being worked on independently of the facial features detection
component, for practical reasons, the demo requires only a slot of the eyes area as input (see
Figure 31)

Figure 31: Slot provided for gaze detection

In the directory of the demo, there is a configuration file. Among others, the configuration file
can configure:

1. The size of the area that will be analyzed (more specifically, the fraction of the dimensions
of the analyzed eyes area with respect to the original one)

2. The kind of input the component will use: setting “1” means that a USB cam will be used.
Setting “0” means that an AVI file in the directory of the Demo will be used.

3. Filter type: The result of the directionality of the gaze is sometimes noisy. A filtered version
of the result can be provided by using an FIR filter. Results are then smoothed and more
accurate, at the expense of a small delay.

4. ROI is the region of interest where the user wants to place the slot to be analyzed.

For analyzing the gaze of an eyes’ area of a stored AVI, the steps to follow are the following:

1. Open the gaze_config file and make sure the video input variable is set to 0. Save the file
and close it.

2. Run the gaze.exe file. You will be asked to give the name of the avi file to run. The folder
already contains some sample videos, so you can use one of them as input file (e.g.
eyearea1.avi). The output video shows an eye area with an arrow pointing to the gaze
directionality (see Figure 32). Also, a moving window appears which is moving following the
gaze.

Figure 32: Gaze Estimation Result

For analyzing the gaze of an eyes’ area using a USB cam, the steps to follow are the
following:

1. Open the gaze_config file and make sure the video input variable is set to 1. Save the file
and close it.

2. Run the gaze.exe file. The output window appears as an orthogonal video output showing

CALLAS Shelf Components First Release Page 44 D121 Version 1.0

input from the webcam.

3. Place your face as in the sample videos (centered with the eyes under the

horizontal line and the eyebrows above), quite close to the webcam (see Figure 33).

Figure 33: Placement of user’s face for gaze detection using a USB cam

4. Having the output window selected with the mouse and the face correctly placed in it,
looking at the center, press ENTER, stay relatively still and move your eyes right, left, up and
down. In case tracking fails, you can select the output window and press ENTER again.

The results of the gaze estimation are stored in the gaze.txt file showing two normalized
values of the gaze directions (angles).

The module, in general, requires satisfactory (but not really strict) lighting conditions to
capture the differences of luminance in the eye area.

4.2.4 Requirements

The component has been developed on a Windows XP platform. Testing on different
versions of Windows requires Windows XP dll files which are included in the first release of
the component. Also, OpenCV dll files and various files, as results of training procedures
need to be available.

4.2.5 Status

At the moment, the module works on slots of eyes areas. The component depends highly on
the results of the facial feature detection and tracking module. There is a continuous need for
improving the two modules in parallel. Especially, tracking shall be a combination between
classic trackers (Lucas-Kanade) and techniques used for feature detecting, developed in
ICCS. This is essential in order to achieve robust results in the case of detecting gaze using
the whole frame of a person placed in front of a camera, rather than just a small part of it
including its eyes’ area.

Further research and experimentation is needed for a first module regarding pose estimation.
However, first prototypes for testing can shortly be available for testing purposes.

4.2.6 Availability

A first demonstrable release of the demo on Windows has already been uploaded on
CALLAS Wiki regarding gaze detection. Future releases of the module will provide with a
demo that captures gaze directionality starting from the whole face, thus, not necessitating
placing a user’s face at a certain position (slot).

