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Executive Summary 

This document describes two components that, taken together, form an Emotional Natural 
Language Generator. 

The document starts with an overview of both components, their respective purpose and an 
introduction of the example scenario to be used throughout this document. 

The second chapter describes the planning component along with its knowledge base and 
strategies. Furthermore, the Semantic Representation Language, a means by which the two 
components communicate, is introduced. 

The third and last chapter describes the sentence realizer together with its subcomponents 
(including two different generation methods) and gives examples of how they are used. The 
task of corpus acquisition and annotation is also explained, along with some guidelines. 
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1. Introduction 

The task of the emotional natural language generator is to automatically produce verbal 
utterances that convey an ECA’s emotional state. Starting from the observation that a 
speaker’s emotional state determines not only the content, but also the linguistic realization of 
verbal utterances, our contribution consists of a “What to say” and a “How to say it” 
component. 

The “What to say” component is realized as a planner while the “How to say it” component 
takes the form of a corpus-based language generation system. Figure 1.1 shows how these 
two components and their respective subcomponents interact with each other. 

Figure 1.1: Component Overview 

While each of the two components can be used on their own, they can also (as shown in the 
figure) be used together, employing a Semantic Representation Language for 
communication. The planner takes a communicative goal as input and outputs a sequence of 
planned utterances, which are then generated and realized by the language generation 
system. The output can either be plain text or text enriched with markups, e.g. with APML, 
the “Affective Presentation Markup Language” (de Carolis et al., 2004). 

Being both implemented in the Java programming language, the components have the same 
hard- and software requirements: A Java-supporting operating system, an installed version of 
the Java Runtime Environment (v. 1.6.0 or later) and a mid-class PC with at least 512 MB of 
working memory. 

Both components (what they are, how they work, and how they can be used) will be 
described in detail in the next two chapters, starting with the planner. For this end we use a 
comprehensive example, which we call the “Twin Sister Reunion”. In this scenario, two 
sisters meet after not having seen each other for some time, greet each other and talk about 
their respective lives. 
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2.  “What to say” 

2.1 The Planner – Overall Concept 

For the “What to say” component, we follow the approach described in (André, 2003). The 
basic idea is to make use of a hierarchical planner to decompose the speaker’s 
communicative goal into more elementary actions. The result of this process is a dialog script 
that represents the elementary dialog turns to be executed by a single ECA or a team of 
ECAs.  

Typically, dialog turns are represented in an XML-based markup language. For CALLAS, we 
rely on APML (Affective Presentation Markup Language) to specify dialog turns for the Greta 
agent and as well as SRL (Semantic Representation Language) which forms the input for a 
statistical sentence realizer (see next chapter). 

As input, the planner expects a communicative goal, a library of plan operators that encode 
communicate templates and a domain knowledge base. To accomplish the communicative 
goal, it looks for applicable plan operators that match the communicative goal. The selection 
of the plan operators depends among other things on an ECA’s emotional state. If a plan 
operator is found, all expressions in the body will be set up as new sub goals. The planning 
process terminates successfully if all sub goals are expanded to dialog turns that may be 
forwarded to the “How to say” component. Otherwise, there is no solution for a given 
communicative goal and the planning process fails. 

To implement the approach, we rely on Kleinbauer’s Nippl planner, which is a re-
implementation of the PrePlan planner originally developed by (André, 2003).  

In the following, we will illustrate the approach by means of a simple example.  

2.2 Building a Greeting Scenario 

To demonstrate the approach, we simulate the communicative behaviors of two twin sisters 
that meet in the street. The flow of their conversation is influenced by personality traits and 
their emotional state. 

The two twin sisters are realized as duplicates of the Greta agent. Greta is an embodied 
conversational agent that incorporates conversational and emotional qualities. To determine 
speech-accompanying non-verbal behaviors the system relies on taxonomy of 
communicative functions.  

Domain Knowledge Base  

The domain knowledge base provides the propositional content for the agents’ dialog 
contributions. In addition, we may specify information on the agent’s personality and 
emotional state.  

name: FACT 

###### Personality and emotional condition of the agents ####### 

(name agent1 "Selma") 
(extroversion agent1 "extrovert") 
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(attitude agent1 agent2 "positive") 

(name agent2 "Patty") 
(extroversion agent2 "introvert") 
(attitude agent2 agent1 "positive") 

Plan operators  

Plan operators specify communicative templates. A plan operator consists of a strategy, 
constraints and a list of sub goals. A strategy consists of a name and a list of arguments, 
which may be constants or variables. Variables are marked with the prefix ‘?’ and may be 
instantiated during the planning process with concrete values. 

strategy: (GreetingScene ?agent1 ?agent2) 
constraints: (FACT (extroversion ?agent1 "extrovert")) 
subgoals:  (GreetEachOther ?agent1 ?agent2) 
           (Smalltalk ?agent1 ?agent2) 
           (FarewellEachOther ?agent1 ?agent2) 

strategy: (GreetEachOther ?agent1 ?agent2) 
constraints: (FACT (extroversion ?agent1 "extrovert")) 
subgoals: (Greet ?agent1 ?agent2) 
          (GreetBack ?agent2 ?agent1) 
    
strategy: (Greet ?agent1 ?agent2) 
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude)) 
subgoals: (GenSRL ?agent1 ?agent2 "greeting" ?attitude) 
   
strategy: (GreetBack ?agent1 ?agent2) 
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude)) 
subgoals: (GenSRL ?agent1 ?agent2 "greeting" ?attitude) 

strategy: (Smalltalk ?agent1 ?agent2) 
subgoals:  
    foreach: ?topic 
       with: (or (FACT (interest ?agent1 ?topic)) 
                 (FACT (interest ?agent2 ?topic))) 
         do: (DiscussTopic ?agent1 ?agent2 ?topic) 
     
strategy: (DiscussTopic ?agent1 ?agent2 ?topic) 
constraints: (and (FACT (extroversion ?agent1 "extrovert")) 
                  (FACT (interest ?agent1 ?topic)))
subgoals: (AskTopic ?agent1 ?agent2 ?topic) 
          (AnswerTopic ?agent2 ?agent1 ?topic) 
   (CommentAnswer ?agent1 ?agent2 ?topic) 
       
strategy: (DiscussTopic ?agent1 ?agent2 ?topic) 
constraints: (and (FACT (extroversion ?agent2 "extrovert")) 
                  (FACT (interest ?agent2 ?topic)))
subgoals: (AskTopic ?agent2 ?agent1 ?topic) 
          (AnswerTopic ?agent1 ?agent2 ?topic) 
       (CommentAnswer ?agent2 ?agent1 ?topic) 
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strategy: (DiscussTopic ?agent1 ?agent2 ?topic) 
subgoals: (DoNothing) 
   
strategy: (AskTopic ?agent1 ?agent2 ?topic) 
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude))  
subgoals: (GenSRL ?agent1 ?agent2 "question" ?topic ?attitude) 
                  
strategy:  (AnswerTopic ?agent1 ?agent2 ?topic) 
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude))  
subgoals: (GenSRL ?agent1 ?agent2 "answer" ?topic ?attitude) 
           
strategy: (CommentAnswer ?agent1 ?agent2 ?topic) 
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude))  
subgoals: (GenSRL ?agent1 ?agent2 "statement_pos" ?attitude) 

The slot constraints specifies the context in which the plan operator may be used. For 
instance, the operator first operator listed above may be used if there is an entry  

(extroversion agent1 "extrovert") 

in the domain knowledge. In this case, ?agent1 would be instantiated with agent1 when the 
strategy is called. That is the agent has to be extrovert to initialize the greeting. 

The slot subgoals specifies the acts to be carried out when the plan operator is applied. In 
our case, GreetEachOther consists of two sub goals: Greet and GreetBack. 

Subgoals may also contain a foreach construct. In this case the specified action might be 
executed several times. The strategy Smalltalk, for example will apply the strategy
DiscussTopic for every ?topic in the knowledge base that fulfils the conditions. 

Communicative Goals  

Communicative goals consist of a communicative act and a list of arguments. To apply a plan 
operator, the goal has to match its header. That is constants have to coincide and variables 
in the operator have to be unifiable with the arguments of the goal. For instance, the goal 

(GreetingScene agent1 agent2) 

 matches the strategy slot of the plan operator above. 

Output 

The output is an SRL expression, that is exported every time the subgoal GenSRL is called. 
The SRL expression contains information about the speaker and the communicative act in. If 
the strategy AskTopic is instantiated with 

(AskTopic agent1 agent2 children) 

and the knowledge base contains information about the negative attitude of agent1, the 
subgoal  

 (GenSRL agent1 agent2 "question" children negative) 

is executed and the following SRL expression is generated.  
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<?xml version="1.0" encoding="ISO-8859-1" ?> 
<SRL> 
<Speaker>agent2</Speaker> 
<MeaningElement attribute="category" value="question" /> 
<MeaningElement attribute="topic" value="children" /> 
<MeaningElement attribute="attitude" value="negative" /> 

</SRL> 
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3. “How to say it” – The Emotional Natural Language 
Generator 

This chapter describes the “Emotional Natural Language Generator” (EmoNLG), a 
component that generates emotional natural language sentences from semantic concepts. 
These semantic concepts can be represented in a specific XML-format, the “Semantic 
Representation Language” (SRL). For example, SRL is the means by which EmoNLG and 
the planner described in chapter 1 communicate.  

EmoNLG provides two different ways of creating emotionally rich sentences which are 
employed at different levels of the generation process. First, there are the semantic concepts 
mentioned above. While these concepts are arbitrary, they can (and should) of course be 
emotion-related thus providing a high-level (e.g. happy vs. unhappy sentences) control over 
the emotional content of created sentences. Second, with a module called Lexicalizer, 
EmoNLG provides means of creating different shades of emotions in the generated 
sentences by substituting words with emotionally rich synonyms (see section 3.3 for more 
details) as described by (Fleischman and Hovy, 2002). 

Note that EmoNLG is not an application but rather a library with which developers can build 
their own applications. 

The remainder of this chapter will first describe the tasks of corpus acquisition and 
annotation, then give a detailed view about EmoNLG’s generation methods, describe the 
SRL, and finally take a closer look two of its modules, the Lexicalizer and the 
BehaviorTagger. 

3.1 Corpus Acquisition and Annotation 

To generate sentences, EmoNLG does not build upon rules or a grammar, but on an 
annotated corpus of sentences from the desired domain and language. EmoNLG generates 
sentences by selecting or statistically deriving them from the ones in the corpus. 

On the one hand, this corpus-based approach is easy to use, extend and port, since it 
requires no more than an annotated corpus which is then statistically analyzed. In 
comparison, the task of designing grammars or rules that can generate all desired sentences 
usually is much more of an  

On the other hand, the quality and understandability of such an approach very much depends 
on the underlying corpus and the statistical information derived from it. Thus, the next two 
sections describe in what way corpora need to be acquired, prepared, and annotated to 
constitute a solid base for EmoNLG. 

3.1.1 Corpus Acquisition and Preparation 

Corpora for EmoNLG can be acquired in any conceivable way, from user studies or 
spontaneous dialogs, in spoken or textual form. However, the following guidelines should be 
kept in mind and followed, especially when preparing the corpus for later use: 

• The corpus needs to be in textual form. Spoken corpora must be transcribed. 

• The corpus must consist of single sentences. Longer utterances, even from the same 
speaker, should be split into single sentences. 

• The sentences should be rather short, containing no more than fifteen words or so. 
Longer sentences should be split into shorter ones, if possible. 

• Sentences in the corpus should contain punctuation marks, since these add a 
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structure that can be learned and reproduced by the generating process. 

• Words should be capitalized correctly (if applicable for the used language) to reduce 
ambiguity.  

• The corpus should contain at least 500 sentences to yield proper statistical 
information. 

• Exchangeable words such as names or places or words that convey certain 
emotional attitudes should be substituted by a proper label (see section 3.3 for more 
details) to yield a more general corpus. 

3.1.2 Corpus Annotation 

The corpus needs to be put in one or more XML-files of a specific format in order to be used 
with EmoNLG. Figure 3.1 shows an excerpt of the corpus file we use for our sample scenario, 
the “Twin Sister Reunion”. 

Figure 3.1: Excerpt from the sample corpus 

As can be seen in Figure 3.1, the top-level tag in the corpus file needs to be called 
SentenceFrames, whereas there is a child node SentenceFrame for each sentence from the 
corpus. Within this child node, the sentence is embedded in a tag called Sentence. The 
annotation itself consists of an arbitrary number of the tag MeaningElement. Each of these 
meaning elements represents a semantic concept as an attribute-value-pair. In our example 
we use three different meaning elements, one for the category of the sentence (“greeting”, 
“farewell”, “question”, “answer” and so on), one for the topic (“partner”, “children” “career” 
etc.), and one for the speaker’s attitude (“positive”, “neutral”, and “negative”) towards that 
particular topic or towards the interlocutor in case of categories that do not require a topic 
(e.g. “greeting”). 

This way of annotating the corpus with attribute-value-pairs as semantic concepts is based 
on (Bhagat and Hovy, 2005). 
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Note that in our scenario, we make no distinction between the two speakers in regard to what 
sentences they can say, and hence we did not annotate speaker-dependent information in 
the corpus. Also note that “$SISTERS_JOB” in the second sentence is one of the above-
mentioned labels that is later replaced by an appropriate expression (see section 3.3). 

The number and kind of meaning elements of course strongly depends on the desired 
application. For example, in our scenario the three elements mentioned above suffice while 
Bhagat and Hovy use six. Figure 3.2 shows one annotated sentence from their corpus.  

Figure 3.2: Excerpt from Bhagat and Hovy's corpus 

It can be seen that Bhagat and Hovy not only use more meaning elements but also that their 
elements wholly describe the semantic content of the sentence. As such, the sentence and 
its associated meaning elements form a semantic frame as described by (Fillmore 1976). 
While such a detailed level of annotation is of course needed in an application like theirs (a 
user giving specific orders to a virtual human) it would be way too detailed for our application 
(two agents performing small talk).  

It is needless to say that the quality and manner of annotation is the most crucial factor for 
the quality of the sentences generated with EmoNLG. Therefore, it needs a lot of careful 
consideration and training to decide the kind and number of meaning elements the corpus 
should be annotated with. Two example concepts of assigning meaning elements have been 
shown here, but of course many more are conceivable. In any case, the following guidelines 
should be taken into consideration: 

• Meaning elements always describe the semantics of the whole sentence and are 
never directly associated with particular words. 

• Meaning elements are one of the two ways in which the emotional content of the 
generated sentences can be influenced (see introduction above for more details).  

3.2 The Generation Methods 

EmoNLG contains two generation methods that generate sentences from the corpus, albeit 
using different approaches. The SelectionGenerator, that merely selects sentences from the 
corpus according to the desired meaning elements, and the StatisticalLanguageProcessor
that employs the generation part of a bidirectional statistical procedure described by (Bhagat 
and Hovy, 2005). The next two sections describe these methods. 

3.2.1 Method A: SelectionGenerator 

The SelectionGenerator is a class within EmoNLG that simply selects a sentence from the 
collected corpus. Figure 3.3 shows some sample code describing its usage. 
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Figure 3.3: Sample usage of the SelectionGenerator

As the figure shows, SelectionGenerator provides a constructor that requires a String with a 
reference to the corpus file(s) to be used. The corpus is then parsed and stored in an 
appropriate data structure. 

Meaning elements are realized in the class AtributeValuePair that simply consists of two 
Strings. The constructor also takes these Strings as parameters, attribute being the first. In 
this example, we want to create a neutral greeting.

SelectionGenerator provides two methods for generation: 

generate and generateRandomSelection. 

Both methods require a Vector of AtributeValuePair as a parameter that represents the 
desired meaning elements. 

A call to generate returns all sentences that are annotated with the desired combination of 
meaning elements. The application itself can then provide ways of selecting one sentence 
from this set as the result of the generation process. 

Using generateRandomSelection already takes care of this by returning a randomly 
selected sentence from the set of all appropriate sentences. 

Note that the order in which the meaning elements are provided to the methods is arbitrary. It 
is also possible to omit certain meaning elements. We could, for example, provide a vector 
that only contains the first AtributeValuePair from Figure 3.3. This would yield all greetings, 
regardless of their attitude. 

If no sentence can be found that corresponds to the supplied meaning elements, null is 
returned. 

Of course, the SelectionGenerator only provides a very simple and straightforward 
procedure, especially when generateRandomSelection is used. Nevertheless, it is 
sufficient for certain kinds of corpora, for example those that contain only few different 
meaning elements and thus enough sentences for every combination of meaning elements. 
In contrast, applications that need to generate sentences for combinations of meaning 
elements not already present in the corpus are of course better off with the 
StatisticalLanguageProcessor described in the next section. 
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3.2.2 Method B: StatisticalLanguageProcessor 

As described above, this generation process is based upon a bidirectional statistical 
language processor described by (Bhagat and Hovy, 2005), which is shown in Figure 3.4  
below. 

Figure 3.4: Overview of the statistical generation process 

As a first and offline step, a statistical language model is built from the annotated corpus. This 
language model consists of conditional probabilities P(wj-2wj-1wj | mi). This denotes the 
probability P of seeing the trigram wj-2wj-1wj as output with the meaning element mi as an 
input. The language model contains such a trigram meaning dependency for each trigram 
meaning combination in the corpus. 

The online generation process itself consists of four steps: candidate selection, candidate 
overlapping, sentence filtering and sentence selection. Each of these steps will now be 
explained in detail. 

Step 1: Candidate Selection. For each meaning element in the input, all trigrams that are 
associated with that meaning element (i.e. their conditional probability within the language 
model is greater than zero) are considered as candidates. Should one trigram be “voted for” 
by more than one meaning element, the different probabilities are summed up and are now 
considered the trigram’s weight. The resulting list of candidates is then sorted by that weight. 

Step 2: Candidate Overlapping: The best 90 (Bhagat and Hovy use 30) candidates from the 
sorted list are then overlapped with each other to form sentences. Two trigrams wawbwc and 
wxwywz overlap if, and only if, wb=wx and wc=wy. In this manner all possible (partial and full) 
sentences, which can be formed by continuously overlapping these 90 trigrams with each 
other, are built. This results in a list of sentences. 

Step 3: Sentence Filtering: This step applies several filter mechanism to the generated 
sentences. This filtering step is not part of Bhagat and Hovy’s work but was added by us. We 
implemented the following filters: 

• “Filter Sentence Beginning”: Only sentences that contain a proper sentence 
beginning a kept after the overlapping, others are discarded. This prevents partial 
sentences that occur often in the corpus from being chosen over whole but seldom 
sentences. 

• “Filter Punctuation”: Only sentences that end with a punctuation mark are kept, 
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others are discarded. This serves the same purpose as described above. 

• “Self-Monitoring”: This filter is based upon the concept of self-monitoring as 
described by (Levelt, 1989). According to this concept, human speakers constantly 
listen to what they are saying and are thus capable of correcting grammatical or 
content-related errors. Following this, we included a way of telling whether a 
generated sentence actually contains what was supposed to be “said” in the first 
place: We also implemented the parser from the language processing system 
described by Bhagat and Hovy and use it to parse all generated sentences. This 
yields a set of meaning elements that we then compare with those that constituted 
the input. This comparison is based on a list of “important attributes” (provided by the 
governing application): If an attribute is on that list but its generated value differs from 
the parsed one, that sentence will receive a negative modifier on its final weight (see 
next step). For example, if the parsing of a certain sentence yielded a meaning 
element “attitude neutral” but the input contained “attitude positive” then that 
sentence would receive a negative modifier if “attitude” was one of the important 
attributes. 

Step 4: Sentence Selection: Each sentence that made it through the filtering step is now 
assigned a weight according to the formula shown in Figure 3.5 (n is the number of trigrams 
in the sentence).  

Figure 3.5: Calculating a sentence's final weight 

A sentence’s final weight is the sum of the logarithms of the weights (as calculated in Step 1) 
of its trigrams, divided by its number of trigrams. The second addend is scaling factor that 
favors longer sentences. 

All sentences are then sorted by that final weight and a certain number (set by the overlying 
application) of the topmost sentences is then returned as result of the generation process. 

Figure 3.6 below illustrates the usage of the StatisticalLanguageProcessor, including the 
different parameters that can be set. 
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Figure 3.6: Sample usage of the StatisticalLanguageProcessor 

Similar to that of the SelectionGenerator, the constructor’s first parameter is a reference to 
the corpus file. The second parameter is a reference to a file containing the language model. 
If the third parameter is set to “false” the language model is built and then written to the 
model file. If set to “true” the model is not built but read from the file. So normally “true” can 
be used (except for the first time, of course), unless the corpus changes. 

The next couple of lines are responsible for setting all the variable parameters and activating 
the various filters mentioned above in the description of the generation process. They should 
all be self-explanatory, the comments indicate which step in the generation process these 
settings influence. 
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3.3 The Lexicalizer

In traditional natural language generation systems the task of lexicalization is a part of 
microplanning and deals with “choosing which words and syntactic structures should be used 
to express messages” (Reiter and Dale, 2000). 

In EmoNLG the Lexicalizer applies finishing touches to the generated sentences by 
substituting certain general concepts (or “placeholders”) with concrete words, hence the 
name. Based on a simplified version of the procedure described by (Fleischman and Hovy, 
2002) the Lexicalizer takes the speaker’s attitude towards these concepts into account when 
choosing the concrete words to put in the sentence.

These concepts and their respective lexicalizations are stored in a XML-file. Figure 3.7 shows 
an excerpt of the one we used in our “Twin Sister Reunion” sample. 

Figure 3.7: XML-File specifying lexicalizations 

This file can contain several “Lexicons”, one for each speaker (who is referenced by name or 
id). Each lexicon contains a number of arbitrary concepts (defined by their name, e.g. 
“SISTERS_JOB”) and their respective possible lexicalizations. 

To include a specific concept in the corpus, words describing it must be substituted with a 
dollar sign (“$”) followed by the name of the concept (cf. “$SISTERS_JOB” in Figure 3.1). 

Each of the lexicalizations also has an emotional shade, which is a floating point number. The 
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range of these values is arbitrary but the higher the value, the more positive the shade. It is 
possible to define more than one lexicalization with the same shade. 

When lexicalizing a generated sentence, the Lexicalizer tries to substitute each concept 
within the sentence (recognized by the “$”) with an appropriate lexicalization. For every 
possible lexicalization the difference between its shade and an attitude (supplied by the 
application) is calculated. The lexicalization with the least difference is then selected and put 
into the sentence. Should more than one lexicalization yield the least difference, one of them 
is randomly chosen. 

The task of creating these Lexicons could be automated by collecting synonyms (for example 
from WordNet) and assigning them values based from affective Lexicons (like WordNet Affect 
or the Whissel emotional dictionary). 

Figure 3.8 shows a code example of the Lexicalizer’s usage (continued from the example in 
Figure 3.3). 

Figure 3.8: Sample usage of the Lexicalizer

The Lexicalizer’s constructor must be supplied with a reference to the file containing the 
lexicalizations. Once initialized, a call to lexicalizeSentence starts the process described 
above. The first parameter is the sentence to be lexicalized, the second is a String containing 
the name of the speaker (in order to select the right lexicon), and the third is the above 
mentioned attitude towards the content of the sentence. 

3.4 The BehaviorTagger

A last step in the generation of emotional natural language sentences could be the 
generation of appropriate accompanying nonverbal behavior such as facial expressions, 
gestures or eye gazes. Although these behaviors could be included in the generated 
sentences via markups, putting them directly in the corpus is not an option. 

However, there are efforts underway in our lab to include behavioral markup in the generation 
process as a post-processing step, similar to the “Nonverbal Behavior Generator” described 
by (Lee and Marsella, 2006). 

The BehaviorTagger is responsible for this final task of adding arbitrary markups to a 
generated sentence. Figure 3.9 contains a code example showing its usage. 
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Figure 3.9: Sample usage of the BehaviorTagger

The BehaviorTagger constructor requires one parameter, an object that implements the 
MarkupWriter interface. APMLWriter is such an object and developers can build their own by 
also implementing this interface. The APMLWriter makes a generated sentence AMPL-
compliant so it can, for example, be animated with the Greta Agent. 

A call to generateDocument yields the marked up sentence as an XML-Document that can 
be, for example, written to a file or sent over the network. This method takes two parameters: 
the sentence to be marked up and an arbitrary number of so-called contexts (organized in a 
Hashtable). These contexts can represent any information necessary for the markup-process. 

For the APMLWriter, for example, we use the semantic concepts “category” and “attitude” to 
apply appropriate affect and performative types to the document. 

3.5 The Semantic Representation Language 

The SRL provides means to communicate with EmoNLG applications “from the outside”, e.g. 
from other applications or over a network. A SRL document can be seen as a “generation 
request”, containing semantic concepts (for the generation itself) and information about the 
speaker (for the lexicalization). Figure 3.10 shows an example of a SRL document. 

Figure 3.10: Sample SRL document 

Similar to the way in which the corpus or lexicon files are structured, an SRL document 
contains a speaker and semantic concepts. 

Within EmoNLG, a single SRL document is represented as an instance of the SRL class. 
This class contains a String representing the speaker and a number of meaning elements, 
again as a Vector of AttributeValuePair. It also contains a convenience method getValue
that returns the value of a designated attribute. The application code in Figure 3.12 contains 
a usage example this class. 
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3.6 Examples 

This final section contains two examples, one displaying two generated dialog and a second 
one showing code for a complete example application built with EmoNLG. 

3.6.1 Example dialog generated with EmoNLG 

Figure 3.11 shows two realizations of the same dialog, with one difference: In the first, both 
agents have a very positive attitude and in the second they have a negative attitude towards 
pretty much everything. 

Figure 3.11: Positive (top) and negative (bottom) dialog examples 

These examples illustrate how both the content of the sentences and lexicalizations for the 
same concepts differ when realized with different attitudes. 

3.6.2 An example application built with EmoNLG 

Figure 3.12 below shows example code for a method that reads SRL from a file, generates a 
sentence using both of EmoNLG’s generation methods, lexicalizes that sentence, creates 
APML-markups and finally writes it back into an AMPL-compliant file (that can be then, for 
example, be used with the Greta Agent). 
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Figure 3.12: Sample application using EmoNLG 

The code shown above should be self-explanatory, since parts of it have already been shown 
in other examples. 
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