
EMOTIONAL NATURAL
LANGUAGE GENERATOR
Conveying Affectiveness in Leading-edge
Living Adaptive Systems

CALLAS

Project IST-34800

Deliverable D1.3.1 WP1.3

Deliverable
Version 1.0 – 31 July 2007

Document. ref.: callas.D131.UOA.WP1.1.V1.0

CALLAS Emotional Natural Language Generation D1.3.1 Version 1.0

Programme Name: IST
Project Number: 34800
Project Title: CALLAS
Partners:.. Coordinator: ENG (IT)

Contractors:
VTT Electronics, BBC, Metaware, Studio
Azzurro, XIM, Digital Video, Humanware,
Nexture, University of Augsburg, ICCS/NTUA,
University of Mons, University of Teesside,
Helsinki University of Technology, Paris 8,
Scuola Normale Superiore di Pisa, University of
Reading, Fondazione Teatro Massimo,
HITLaboratory New Zealand

Document Number: D1.3.1
Work-Package:.............................. WP1.3
Deliverable Type: Specs
Contractual Date of Delivery: 31/07/2007
Actual Date of Delivery:
Title of Document: Emotional Natural Language Generation
Author(s): Michael Wißner, Birgit Endraß, Elisabeth André

Approval of this report Executive Committee

Summary of this report:............... Description of CALLAS components that form
an Emotional Natural Language Generator

History: ..

Keyword List: emotional natural language generation, speech
processing, sentence planning

Availability..................................... This report is public

CALLAS Emotional Natural Language Generation D1.3.1 Version 1.0

Table of Contents
EXECUTIVE SUMMARY 1

1. INTRODUCTION 2

2. “WHAT TO SAY” 3

2.1 THE PLANNER – OVERALL CONCEPT 3
2.2 BUILDING A GREETING SCENARIO 3

3. “HOW TO SAY IT” – THE EMOTIONAL NATURAL LANGUAGE GENERATOR 7

3.1 CORPUS ACQUISITION AND ANNOTATION 7
3.1.1 Corpus Acquisition and Preparation 7
3.1.2 Corpus Annotation 8

3.2 THE GENERATION METHODS 9
3.2.1 Method A: SelectionGenerator 9
3.2.2 Method B: StatisticalLanguageProcessor 11

3.3 THE LEXICALIZER 14
3.4 THE BEHAVIORTAGGER 15
3.5 THE SEMANTIC REPRESENTATION LANGUAGE 16
3.6 EXAMPLES 17

3.6.1 Example dialog generated with EmoNLG 17
3.6.2 An example application built with EmoNLG 17

REFERENCES 19

Figure 1.1: Component Overview ... 2

Figure 3.1: Excerpt from the sample corpus ... 8

Figure 3.2: Excerpt from Bhagat and Hovy's corpus... 9

Figure 3.3: Sample usage of the SelectionGenerator ... 10

Figure 3.4: Overview of the statistical generation process ... 11

Figure 3.5: Calculating a sentence's final weight .. 12

Figure 3.6: Sample usage of the StatisticalLanguageProcessor .. 13

Figure 3.7: XML-File specifying lexicalizations ... 14

Figure 3.8: Sample usage of the Lexicalizer ... 15

Figure 3.9: Sample usage of the BehaviorTagger .. 16

Figure 3.10: Sample SRL document ... 16

Figure 3.11: Positive (top) and negative (bottom) dialog examples.. 17

Figure 3.12: Sample application using EmoNLG .. 18

CALLAS Emotional Natural Language Generation Page 1 D1.3.1 Version 1.0

Executive Summary

This document describes two components that, taken together, form an Emotional Natural
Language Generator.

The document starts with an overview of both components, their respective purpose and an
introduction of the example scenario to be used throughout this document.

The second chapter describes the planning component along with its knowledge base and
strategies. Furthermore, the Semantic Representation Language, a means by which the two
components communicate, is introduced.

The third and last chapter describes the sentence realizer together with its subcomponents
(including two different generation methods) and gives examples of how they are used. The
task of corpus acquisition and annotation is also explained, along with some guidelines.

CALLAS Emotional Natural Language Generation Page 2 D1.3.1 Version 1.0

1. Introduction

The task of the emotional natural language generator is to automatically produce verbal
utterances that convey an ECA’s emotional state. Starting from the observation that a
speaker’s emotional state determines not only the content, but also the linguistic realization of
verbal utterances, our contribution consists of a “What to say” and a “How to say it”
component.

The “What to say” component is realized as a planner while the “How to say it” component
takes the form of a corpus-based language generation system. Figure 1.1 shows how these
two components and their respective subcomponents interact with each other.

Figure 1.1: Component Overview

While each of the two components can be used on their own, they can also (as shown in the
figure) be used together, employing a Semantic Representation Language for
communication. The planner takes a communicative goal as input and outputs a sequence of
planned utterances, which are then generated and realized by the language generation
system. The output can either be plain text or text enriched with markups, e.g. with APML,
the “Affective Presentation Markup Language” (de Carolis et al., 2004).

Being both implemented in the Java programming language, the components have the same
hard- and software requirements: A Java-supporting operating system, an installed version of
the Java Runtime Environment (v. 1.6.0 or later) and a mid-class PC with at least 512 MB of
working memory.

Both components (what they are, how they work, and how they can be used) will be
described in detail in the next two chapters, starting with the planner. For this end we use a
comprehensive example, which we call the “Twin Sister Reunion”. In this scenario, two
sisters meet after not having seen each other for some time, greet each other and talk about
their respective lives.

CALLAS Emotional Natural Language Generation Page 3 D1.3.1 Version 1.0

2. “What to say”

2.1 The Planner – Overall Concept

For the “What to say” component, we follow the approach described in (André, 2003). The
basic idea is to make use of a hierarchical planner to decompose the speaker’s
communicative goal into more elementary actions. The result of this process is a dialog script
that represents the elementary dialog turns to be executed by a single ECA or a team of
ECAs.

Typically, dialog turns are represented in an XML-based markup language. For CALLAS, we
rely on APML (Affective Presentation Markup Language) to specify dialog turns for the Greta
agent and as well as SRL (Semantic Representation Language) which forms the input for a
statistical sentence realizer (see next chapter).

As input, the planner expects a communicative goal, a library of plan operators that encode
communicate templates and a domain knowledge base. To accomplish the communicative
goal, it looks for applicable plan operators that match the communicative goal. The selection
of the plan operators depends among other things on an ECA’s emotional state. If a plan
operator is found, all expressions in the body will be set up as new sub goals. The planning
process terminates successfully if all sub goals are expanded to dialog turns that may be
forwarded to the “How to say” component. Otherwise, there is no solution for a given
communicative goal and the planning process fails.

To implement the approach, we rely on Kleinbauer’s Nippl planner, which is a re-
implementation of the PrePlan planner originally developed by (André, 2003).

In the following, we will illustrate the approach by means of a simple example.

2.2 Building a Greeting Scenario

To demonstrate the approach, we simulate the communicative behaviors of two twin sisters
that meet in the street. The flow of their conversation is influenced by personality traits and
their emotional state.

The two twin sisters are realized as duplicates of the Greta agent. Greta is an embodied
conversational agent that incorporates conversational and emotional qualities. To determine
speech-accompanying non-verbal behaviors the system relies on taxonomy of
communicative functions.

Domain Knowledge Base

The domain knowledge base provides the propositional content for the agents’ dialog
contributions. In addition, we may specify information on the agent’s personality and
emotional state.

name: FACT

Personality and emotional condition of the agents #######

(name agent1 "Selma")
(extroversion agent1 "extrovert")

CALLAS Emotional Natural Language Generation Page 4 D1.3.1 Version 1.0

(attitude agent1 agent2 "positive")

(name agent2 "Patty")
(extroversion agent2 "introvert")
(attitude agent2 agent1 "positive")

Plan operators

Plan operators specify communicative templates. A plan operator consists of a strategy,
constraints and a list of sub goals. A strategy consists of a name and a list of arguments,
which may be constants or variables. Variables are marked with the prefix ‘?’ and may be
instantiated during the planning process with concrete values.

strategy: (GreetingScene ?agent1 ?agent2)
constraints: (FACT (extroversion ?agent1 "extrovert"))
subgoals: (GreetEachOther ?agent1 ?agent2)
 (Smalltalk ?agent1 ?agent2)
 (FarewellEachOther ?agent1 ?agent2)

strategy: (GreetEachOther ?agent1 ?agent2)
constraints: (FACT (extroversion ?agent1 "extrovert"))
subgoals: (Greet ?agent1 ?agent2)
 (GreetBack ?agent2 ?agent1)

strategy: (Greet ?agent1 ?agent2)
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude))
subgoals: (GenSRL ?agent1 ?agent2 "greeting" ?attitude)

strategy: (GreetBack ?agent1 ?agent2)
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude))
subgoals: (GenSRL ?agent1 ?agent2 "greeting" ?attitude)

strategy: (Smalltalk ?agent1 ?agent2)
subgoals:
 foreach: ?topic
 with: (or (FACT (interest ?agent1 ?topic))
 (FACT (interest ?agent2 ?topic)))
 do: (DiscussTopic ?agent1 ?agent2 ?topic)

strategy: (DiscussTopic ?agent1 ?agent2 ?topic)
constraints: (and (FACT (extroversion ?agent1 "extrovert"))
 (FACT (interest ?agent1 ?topic)))
subgoals: (AskTopic ?agent1 ?agent2 ?topic)
 (AnswerTopic ?agent2 ?agent1 ?topic)
 (CommentAnswer ?agent1 ?agent2 ?topic)

strategy: (DiscussTopic ?agent1 ?agent2 ?topic)
constraints: (and (FACT (extroversion ?agent2 "extrovert"))
 (FACT (interest ?agent2 ?topic)))
subgoals: (AskTopic ?agent2 ?agent1 ?topic)
 (AnswerTopic ?agent1 ?agent2 ?topic)
 (CommentAnswer ?agent2 ?agent1 ?topic)

CALLAS Emotional Natural Language Generation Page 5 D1.3.1 Version 1.0

strategy: (DiscussTopic ?agent1 ?agent2 ?topic)
subgoals: (DoNothing)

strategy: (AskTopic ?agent1 ?agent2 ?topic)
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude))
subgoals: (GenSRL ?agent1 ?agent2 "question" ?topic ?attitude)

strategy: (AnswerTopic ?agent1 ?agent2 ?topic)
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude))
subgoals: (GenSRL ?agent1 ?agent2 "answer" ?topic ?attitude)

strategy: (CommentAnswer ?agent1 ?agent2 ?topic)
constraints: (FACT (attitude ?agent1 ?agent2 ?attitude))
subgoals: (GenSRL ?agent1 ?agent2 "statement_pos" ?attitude)

The slot constraints specifies the context in which the plan operator may be used. For
instance, the operator first operator listed above may be used if there is an entry

(extroversion agent1 "extrovert")

in the domain knowledge. In this case, ?agent1 would be instantiated with agent1 when the
strategy is called. That is the agent has to be extrovert to initialize the greeting.

The slot subgoals specifies the acts to be carried out when the plan operator is applied. In
our case, GreetEachOther consists of two sub goals: Greet and GreetBack.

Subgoals may also contain a foreach construct. In this case the specified action might be
executed several times. The strategy Smalltalk, for example will apply the strategy
DiscussTopic for every ?topic in the knowledge base that fulfils the conditions.

Communicative Goals

Communicative goals consist of a communicative act and a list of arguments. To apply a plan
operator, the goal has to match its header. That is constants have to coincide and variables
in the operator have to be unifiable with the arguments of the goal. For instance, the goal

(GreetingScene agent1 agent2)

 matches the strategy slot of the plan operator above.

Output

The output is an SRL expression, that is exported every time the subgoal GenSRL is called.
The SRL expression contains information about the speaker and the communicative act in. If
the strategy AskTopic is instantiated with

(AskTopic agent1 agent2 children)

and the knowledge base contains information about the negative attitude of agent1, the
subgoal

 (GenSRL agent1 agent2 "question" children negative)

is executed and the following SRL expression is generated.

CALLAS Emotional Natural Language Generation Page 6 D1.3.1 Version 1.0

<?xml version="1.0" encoding="ISO-8859-1" ?>
<SRL>
<Speaker>agent2</Speaker>
<MeaningElement attribute="category" value="question" />
<MeaningElement attribute="topic" value="children" />
<MeaningElement attribute="attitude" value="negative" />

</SRL>

CALLAS Emotional Natural Language Generation Page 7 D1.3.1 Version 1.0

3. “How to say it” – The Emotional Natural Language
Generator

This chapter describes the “Emotional Natural Language Generator” (EmoNLG), a
component that generates emotional natural language sentences from semantic concepts.
These semantic concepts can be represented in a specific XML-format, the “Semantic
Representation Language” (SRL). For example, SRL is the means by which EmoNLG and
the planner described in chapter 1 communicate.

EmoNLG provides two different ways of creating emotionally rich sentences which are
employed at different levels of the generation process. First, there are the semantic concepts
mentioned above. While these concepts are arbitrary, they can (and should) of course be
emotion-related thus providing a high-level (e.g. happy vs. unhappy sentences) control over
the emotional content of created sentences. Second, with a module called Lexicalizer,
EmoNLG provides means of creating different shades of emotions in the generated
sentences by substituting words with emotionally rich synonyms (see section 3.3 for more
details) as described by (Fleischman and Hovy, 2002).

Note that EmoNLG is not an application but rather a library with which developers can build
their own applications.

The remainder of this chapter will first describe the tasks of corpus acquisition and
annotation, then give a detailed view about EmoNLG’s generation methods, describe the
SRL, and finally take a closer look two of its modules, the Lexicalizer and the
BehaviorTagger.

3.1 Corpus Acquisition and Annotation

To generate sentences, EmoNLG does not build upon rules or a grammar, but on an
annotated corpus of sentences from the desired domain and language. EmoNLG generates
sentences by selecting or statistically deriving them from the ones in the corpus.

On the one hand, this corpus-based approach is easy to use, extend and port, since it
requires no more than an annotated corpus which is then statistically analyzed. In
comparison, the task of designing grammars or rules that can generate all desired sentences
usually is much more of an

On the other hand, the quality and understandability of such an approach very much depends
on the underlying corpus and the statistical information derived from it. Thus, the next two
sections describe in what way corpora need to be acquired, prepared, and annotated to
constitute a solid base for EmoNLG.

3.1.1 Corpus Acquisition and Preparation

Corpora for EmoNLG can be acquired in any conceivable way, from user studies or
spontaneous dialogs, in spoken or textual form. However, the following guidelines should be
kept in mind and followed, especially when preparing the corpus for later use:

• The corpus needs to be in textual form. Spoken corpora must be transcribed.

• The corpus must consist of single sentences. Longer utterances, even from the same
speaker, should be split into single sentences.

• The sentences should be rather short, containing no more than fifteen words or so.
Longer sentences should be split into shorter ones, if possible.

• Sentences in the corpus should contain punctuation marks, since these add a

CALLAS Emotional Natural Language Generation Page 8 D1.3.1 Version 1.0

structure that can be learned and reproduced by the generating process.

• Words should be capitalized correctly (if applicable for the used language) to reduce
ambiguity.

• The corpus should contain at least 500 sentences to yield proper statistical
information.

• Exchangeable words such as names or places or words that convey certain
emotional attitudes should be substituted by a proper label (see section 3.3 for more
details) to yield a more general corpus.

3.1.2 Corpus Annotation

The corpus needs to be put in one or more XML-files of a specific format in order to be used
with EmoNLG. Figure 3.1 shows an excerpt of the corpus file we use for our sample scenario,
the “Twin Sister Reunion”.

Figure 3.1: Excerpt from the sample corpus

As can be seen in Figure 3.1, the top-level tag in the corpus file needs to be called
SentenceFrames, whereas there is a child node SentenceFrame for each sentence from the
corpus. Within this child node, the sentence is embedded in a tag called Sentence. The
annotation itself consists of an arbitrary number of the tag MeaningElement. Each of these
meaning elements represents a semantic concept as an attribute-value-pair. In our example
we use three different meaning elements, one for the category of the sentence (“greeting”,
“farewell”, “question”, “answer” and so on), one for the topic (“partner”, “children” “career”
etc.), and one for the speaker’s attitude (“positive”, “neutral”, and “negative”) towards that
particular topic or towards the interlocutor in case of categories that do not require a topic
(e.g. “greeting”).

This way of annotating the corpus with attribute-value-pairs as semantic concepts is based
on (Bhagat and Hovy, 2005).

CALLAS Emotional Natural Language Generation Page 9 D1.3.1 Version 1.0

Note that in our scenario, we make no distinction between the two speakers in regard to what
sentences they can say, and hence we did not annotate speaker-dependent information in
the corpus. Also note that “$SISTERS_JOB” in the second sentence is one of the above-
mentioned labels that is later replaced by an appropriate expression (see section 3.3).

The number and kind of meaning elements of course strongly depends on the desired
application. For example, in our scenario the three elements mentioned above suffice while
Bhagat and Hovy use six. Figure 3.2 shows one annotated sentence from their corpus.

Figure 3.2: Excerpt from Bhagat and Hovy's corpus

It can be seen that Bhagat and Hovy not only use more meaning elements but also that their
elements wholly describe the semantic content of the sentence. As such, the sentence and
its associated meaning elements form a semantic frame as described by (Fillmore 1976).
While such a detailed level of annotation is of course needed in an application like theirs (a
user giving specific orders to a virtual human) it would be way too detailed for our application
(two agents performing small talk).

It is needless to say that the quality and manner of annotation is the most crucial factor for
the quality of the sentences generated with EmoNLG. Therefore, it needs a lot of careful
consideration and training to decide the kind and number of meaning elements the corpus
should be annotated with. Two example concepts of assigning meaning elements have been
shown here, but of course many more are conceivable. In any case, the following guidelines
should be taken into consideration:

• Meaning elements always describe the semantics of the whole sentence and are
never directly associated with particular words.

• Meaning elements are one of the two ways in which the emotional content of the
generated sentences can be influenced (see introduction above for more details).

3.2 The Generation Methods

EmoNLG contains two generation methods that generate sentences from the corpus, albeit
using different approaches. The SelectionGenerator, that merely selects sentences from the
corpus according to the desired meaning elements, and the StatisticalLanguageProcessor
that employs the generation part of a bidirectional statistical procedure described by (Bhagat
and Hovy, 2005). The next two sections describe these methods.

3.2.1 Method A: SelectionGenerator

The SelectionGenerator is a class within EmoNLG that simply selects a sentence from the
collected corpus. Figure 3.3 shows some sample code describing its usage.

CALLAS Emotional Natural Language Generation Page 10 D1.3.1 Version 1.0

Figure 3.3: Sample usage of the SelectionGenerator

As the figure shows, SelectionGenerator provides a constructor that requires a String with a
reference to the corpus file(s) to be used. The corpus is then parsed and stored in an
appropriate data structure.

Meaning elements are realized in the class AtributeValuePair that simply consists of two
Strings. The constructor also takes these Strings as parameters, attribute being the first. In
this example, we want to create a neutral greeting.

SelectionGenerator provides two methods for generation:

generate and generateRandomSelection.

Both methods require a Vector of AtributeValuePair as a parameter that represents the
desired meaning elements.

A call to generate returns all sentences that are annotated with the desired combination of
meaning elements. The application itself can then provide ways of selecting one sentence
from this set as the result of the generation process.

Using generateRandomSelection already takes care of this by returning a randomly
selected sentence from the set of all appropriate sentences.

Note that the order in which the meaning elements are provided to the methods is arbitrary. It
is also possible to omit certain meaning elements. We could, for example, provide a vector
that only contains the first AtributeValuePair from Figure 3.3. This would yield all greetings,
regardless of their attitude.

If no sentence can be found that corresponds to the supplied meaning elements, null is
returned.

Of course, the SelectionGenerator only provides a very simple and straightforward
procedure, especially when generateRandomSelection is used. Nevertheless, it is
sufficient for certain kinds of corpora, for example those that contain only few different
meaning elements and thus enough sentences for every combination of meaning elements.
In contrast, applications that need to generate sentences for combinations of meaning
elements not already present in the corpus are of course better off with the
StatisticalLanguageProcessor described in the next section.

CALLAS Emotional Natural Language Generation Page 11 D1.3.1 Version 1.0

3.2.2 Method B: StatisticalLanguageProcessor

As described above, this generation process is based upon a bidirectional statistical
language processor described by (Bhagat and Hovy, 2005), which is shown in Figure 3.4
below.

Figure 3.4: Overview of the statistical generation process

As a first and offline step, a statistical language model is built from the annotated corpus. This
language model consists of conditional probabilities P(wj-2wj-1wj | mi). This denotes the
probability P of seeing the trigram wj-2wj-1wj as output with the meaning element mi as an
input. The language model contains such a trigram meaning dependency for each trigram
meaning combination in the corpus.

The online generation process itself consists of four steps: candidate selection, candidate
overlapping, sentence filtering and sentence selection. Each of these steps will now be
explained in detail.

Step 1: Candidate Selection. For each meaning element in the input, all trigrams that are
associated with that meaning element (i.e. their conditional probability within the language
model is greater than zero) are considered as candidates. Should one trigram be “voted for”
by more than one meaning element, the different probabilities are summed up and are now
considered the trigram’s weight. The resulting list of candidates is then sorted by that weight.

Step 2: Candidate Overlapping: The best 90 (Bhagat and Hovy use 30) candidates from the
sorted list are then overlapped with each other to form sentences. Two trigrams wawbwc and
wxwywz overlap if, and only if, wb=wx and wc=wy. In this manner all possible (partial and full)
sentences, which can be formed by continuously overlapping these 90 trigrams with each
other, are built. This results in a list of sentences.

Step 3: Sentence Filtering: This step applies several filter mechanism to the generated
sentences. This filtering step is not part of Bhagat and Hovy’s work but was added by us. We
implemented the following filters:

• “Filter Sentence Beginning”: Only sentences that contain a proper sentence
beginning a kept after the overlapping, others are discarded. This prevents partial
sentences that occur often in the corpus from being chosen over whole but seldom
sentences.

• “Filter Punctuation”: Only sentences that end with a punctuation mark are kept,

CALLAS Emotional Natural Language Generation Page 12 D1.3.1 Version 1.0

others are discarded. This serves the same purpose as described above.

• “Self-Monitoring”: This filter is based upon the concept of self-monitoring as
described by (Levelt, 1989). According to this concept, human speakers constantly
listen to what they are saying and are thus capable of correcting grammatical or
content-related errors. Following this, we included a way of telling whether a
generated sentence actually contains what was supposed to be “said” in the first
place: We also implemented the parser from the language processing system
described by Bhagat and Hovy and use it to parse all generated sentences. This
yields a set of meaning elements that we then compare with those that constituted
the input. This comparison is based on a list of “important attributes” (provided by the
governing application): If an attribute is on that list but its generated value differs from
the parsed one, that sentence will receive a negative modifier on its final weight (see
next step). For example, if the parsing of a certain sentence yielded a meaning
element “attitude neutral” but the input contained “attitude positive” then that
sentence would receive a negative modifier if “attitude” was one of the important
attributes.

Step 4: Sentence Selection: Each sentence that made it through the filtering step is now
assigned a weight according to the formula shown in Figure 3.5 (n is the number of trigrams
in the sentence).

Figure 3.5: Calculating a sentence's final weight

A sentence’s final weight is the sum of the logarithms of the weights (as calculated in Step 1)
of its trigrams, divided by its number of trigrams. The second addend is scaling factor that
favors longer sentences.

All sentences are then sorted by that final weight and a certain number (set by the overlying
application) of the topmost sentences is then returned as result of the generation process.

Figure 3.6 below illustrates the usage of the StatisticalLanguageProcessor, including the
different parameters that can be set.

CALLAS Emotional Natural Language Generation Page 13 D1.3.1 Version 1.0

Figure 3.6: Sample usage of the StatisticalLanguageProcessor

Similar to that of the SelectionGenerator, the constructor’s first parameter is a reference to
the corpus file. The second parameter is a reference to a file containing the language model.
If the third parameter is set to “false” the language model is built and then written to the
model file. If set to “true” the model is not built but read from the file. So normally “true” can
be used (except for the first time, of course), unless the corpus changes.

The next couple of lines are responsible for setting all the variable parameters and activating
the various filters mentioned above in the description of the generation process. They should
all be self-explanatory, the comments indicate which step in the generation process these
settings influence.

CALLAS Emotional Natural Language Generation Page 14 D1.3.1 Version 1.0

3.3 The Lexicalizer

In traditional natural language generation systems the task of lexicalization is a part of
microplanning and deals with “choosing which words and syntactic structures should be used
to express messages” (Reiter and Dale, 2000).

In EmoNLG the Lexicalizer applies finishing touches to the generated sentences by
substituting certain general concepts (or “placeholders”) with concrete words, hence the
name. Based on a simplified version of the procedure described by (Fleischman and Hovy,
2002) the Lexicalizer takes the speaker’s attitude towards these concepts into account when
choosing the concrete words to put in the sentence.

These concepts and their respective lexicalizations are stored in a XML-file. Figure 3.7 shows
an excerpt of the one we used in our “Twin Sister Reunion” sample.

Figure 3.7: XML-File specifying lexicalizations

This file can contain several “Lexicons”, one for each speaker (who is referenced by name or
id). Each lexicon contains a number of arbitrary concepts (defined by their name, e.g.
“SISTERS_JOB”) and their respective possible lexicalizations.

To include a specific concept in the corpus, words describing it must be substituted with a
dollar sign (“$”) followed by the name of the concept (cf. “$SISTERS_JOB” in Figure 3.1).

Each of the lexicalizations also has an emotional shade, which is a floating point number. The

CALLAS Emotional Natural Language Generation Page 15 D1.3.1 Version 1.0

range of these values is arbitrary but the higher the value, the more positive the shade. It is
possible to define more than one lexicalization with the same shade.

When lexicalizing a generated sentence, the Lexicalizer tries to substitute each concept
within the sentence (recognized by the “$”) with an appropriate lexicalization. For every
possible lexicalization the difference between its shade and an attitude (supplied by the
application) is calculated. The lexicalization with the least difference is then selected and put
into the sentence. Should more than one lexicalization yield the least difference, one of them
is randomly chosen.

The task of creating these Lexicons could be automated by collecting synonyms (for example
from WordNet) and assigning them values based from affective Lexicons (like WordNet Affect
or the Whissel emotional dictionary).

Figure 3.8 shows a code example of the Lexicalizer’s usage (continued from the example in
Figure 3.3).

Figure 3.8: Sample usage of the Lexicalizer

The Lexicalizer’s constructor must be supplied with a reference to the file containing the
lexicalizations. Once initialized, a call to lexicalizeSentence starts the process described
above. The first parameter is the sentence to be lexicalized, the second is a String containing
the name of the speaker (in order to select the right lexicon), and the third is the above
mentioned attitude towards the content of the sentence.

3.4 The BehaviorTagger

A last step in the generation of emotional natural language sentences could be the
generation of appropriate accompanying nonverbal behavior such as facial expressions,
gestures or eye gazes. Although these behaviors could be included in the generated
sentences via markups, putting them directly in the corpus is not an option.

However, there are efforts underway in our lab to include behavioral markup in the generation
process as a post-processing step, similar to the “Nonverbal Behavior Generator” described
by (Lee and Marsella, 2006).

The BehaviorTagger is responsible for this final task of adding arbitrary markups to a
generated sentence. Figure 3.9 contains a code example showing its usage.

CALLAS Emotional Natural Language Generation Page 16 D1.3.1 Version 1.0

Figure 3.9: Sample usage of the BehaviorTagger

The BehaviorTagger constructor requires one parameter, an object that implements the
MarkupWriter interface. APMLWriter is such an object and developers can build their own by
also implementing this interface. The APMLWriter makes a generated sentence AMPL-
compliant so it can, for example, be animated with the Greta Agent.

A call to generateDocument yields the marked up sentence as an XML-Document that can
be, for example, written to a file or sent over the network. This method takes two parameters:
the sentence to be marked up and an arbitrary number of so-called contexts (organized in a
Hashtable). These contexts can represent any information necessary for the markup-process.

For the APMLWriter, for example, we use the semantic concepts “category” and “attitude” to
apply appropriate affect and performative types to the document.

3.5 The Semantic Representation Language

The SRL provides means to communicate with EmoNLG applications “from the outside”, e.g.
from other applications or over a network. A SRL document can be seen as a “generation
request”, containing semantic concepts (for the generation itself) and information about the
speaker (for the lexicalization). Figure 3.10 shows an example of a SRL document.

Figure 3.10: Sample SRL document

Similar to the way in which the corpus or lexicon files are structured, an SRL document
contains a speaker and semantic concepts.

Within EmoNLG, a single SRL document is represented as an instance of the SRL class.
This class contains a String representing the speaker and a number of meaning elements,
again as a Vector of AttributeValuePair. It also contains a convenience method getValue
that returns the value of a designated attribute. The application code in Figure 3.12 contains
a usage example this class.

CALLAS Emotional Natural Language Generation Page 17 D1.3.1 Version 1.0

3.6 Examples

This final section contains two examples, one displaying two generated dialog and a second
one showing code for a complete example application built with EmoNLG.

3.6.1 Example dialog generated with EmoNLG

Figure 3.11 shows two realizations of the same dialog, with one difference: In the first, both
agents have a very positive attitude and in the second they have a negative attitude towards
pretty much everything.

Figure 3.11: Positive (top) and negative (bottom) dialog examples

These examples illustrate how both the content of the sentences and lexicalizations for the
same concepts differ when realized with different attitudes.

3.6.2 An example application built with EmoNLG

Figure 3.12 below shows example code for a method that reads SRL from a file, generates a
sentence using both of EmoNLG’s generation methods, lexicalizes that sentence, creates
APML-markups and finally writes it back into an AMPL-compliant file (that can be then, for
example, be used with the Greta Agent).

CALLAS Emotional Natural Language Generation Page 18 D1.3.1 Version 1.0

Figure 3.12: Sample application using EmoNLG

The code shown above should be self-explanatory, since parts of it have already been shown
in other examples.

CALLAS Emotional Natural Language Generation Page 19 D1.3.1 Version 1.0

References

E. André, "Natural Language in Multimedia/Multimodal Systems", Handbook of
Computational Linguistics , R. Mitkov, 650-669, Oxford University Press, 2003

R. Bhagat, E. Hovy, “Trainable Reversible Language Analysis and Generation”, 2005

B. de Carolis, C. Pelachaud, I. Poggi, M. Steedman, “APML, a Mark-up Language for
Believable Behavior Generation”, Life-like Characters: Tools, Affective Functions and
Applications, H. Prendinger, Springer, 2004

C. Fillmore, “Frame Semantics and the Nature of Language”, Annals of the New York
Academy of Sciences: Conference on the Origin and Development of Language and Speech,
1976

M, Fleischman, E. Hovy, “Towards Emotional Variation in Speech-Based Natural Language
Generation”, International Natural Language Generation Conference, Arden House, 2002

J. Lee, S. Marsella, “Nonverbal Behavior Generator for Embodied Conversational Agents”,
6th International Conference on Intelligent Virtual Agents, 2006

W. Levelt, “Speaking: From Intention to Articulation”, MIT Press, 1989

E. Reiter, R. Dale, “Building Natural-Language Generation Systems”, Cambridge University
Press, 2000

